Search results for: enamel porosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 598

Search results for: enamel porosity

478 Wave Interaction with Single and Twin Vertical and Sloped Porous Walls

Authors: Mohamad Alkhalidi, S. Neelamani, Noor Alanjari

Abstract:

The main purpose of harbors and marinas is to create a calm and safe docking space for marine vessels. Standard rubble mound breakwaters, although widely used, occupy port space and require large amounts of stones or rocks. Kuwait does not have good quality stone, so they are imported at a very high cost. Therefore, there is a need for a new wave energy dissipating structure where stones and rocks are scarce. While permeable slotted vertical walls have been proved to be a suitable alternative to rubble mound breakwaters, the introduction of sloped slotted walls may be more efficient in dissipating wave energy. For example, two slotted barriers with 60degree inclination may be equivalent to three vertical slotted barriers from wave energy dissipation point of view. A detailed physical model study is carried out to determine the effects of slope angle, porosity, and a number of walls on wave energy dissipation for a wide range of random and regular waves. The results of this study can be used to improve and optimize energy dissipation and reduce construction cost.

Keywords: porosity, slope, wave reflection, wave transmission

Procedia PDF Downloads 269
477 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 135
476 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles

Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol

Abstract:

Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.

Keywords: bone, PCL, 3D printing, tissue engineering

Procedia PDF Downloads 23
475 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 610
474 Effects of Tillage and Poultry Manure on Soil Properties and Yam Performance on Alfisol in Southwest Nigeria

Authors: Adeleye Ebenezer Omotayo

Abstract:

The main effects of tillage, poultry manure and interaction effects of tillage-poultry manure combinations on soil characteristics and yam yield were investigated in a factorial experiment involving four tillage techniques namely (ploughing (p), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and poultry manure at two levels 0 t ha-1 and 10 t ha-1 arranged in split-plot design. Data obtained were subjected to analysis of variance using Statistical Analysis System (SAS) Institute Package. Soil moisture content, bulk density and total porosity were significantly (p>0.05) influenced by soil tillage techniques. Manually heaped and ridged plots had the lowest soil bulk density, moisture content and highest total porosity. The soil total N, exchangeable Mg, k, base saturation and CEC were better enhanced in manually tilled plots. Soil nutrients status declined at the end of the second cropping for all the tillage techniques in the order PH>P>MH>MR. Yam tuber yields were better enhanced in manually tilled plots than mechanically tilled plots. Poultry manure application reduced soil bulk density, temperature, increased total porosity and soil moisture content. It also improved soil organic matter, total N, available P, exchangeable Mg, Ca, K and lowered exchange acidity. It also increased yam tuber yield significantly. Tillage techniques plots amended with poultry manure enhanced yam tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that yam production on alfisol in Southwest Nigeria requires loose soil structure for tuber development and that the use of poultry manure in combination with tillage is recommended as it will ensure stability of soil structure, improve soil organic matter status, nutrient availability and high yam tuber yield. Also, it will help to reduce the possible deleterious effects of tillage on soil properties and yam performance.

Keywords: ploughing, poultry manure, yam, yield

Procedia PDF Downloads 243
473 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance

Procedia PDF Downloads 143
472 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 533
471 Improved Mechanical Properties and Osteogenesis in Electrospun Poly L-Lactic Ultrafine Nanofiber Scaffolds Incorporated with Graphene Oxide

Authors: Weili Shao, Qian Wang, Jianxin He

Abstract:

Recently, the applications of graphene oxide in fabricating scaffolds for bone tissue engineering have been received extensive concern. In this work, poly l-lactic/graphene oxide composite nanofibers were successfully fabricated by electrospinning. The morphology structure, porosity and mechanical properties of the composite nanofibers were characterized using different techniques. And mouse mesenchymal stem cells were cultured on the composite nanofiber scaffolds to assess their suitability for bone tissue engineering. The results indicated that the composite nanofiber scaffolds had finer fiber diameter and higher porosity as compared with pure poly l-lactic nanofibers. Furthermore, incorporation of graphene oxide into the poly l-lactic nanofibers increased protein adsorptivity, boosted the Young’s modulus and tensile strength by nearly 4.2-fold and 3.5-fold, respectively, and significantly enhanced adhesion, proliferation, and osteogenesis in mouse mesenchymal stem cells. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

Keywords: poly l-lactic, graphene oxide, osteogenesis, bone tissue engineering

Procedia PDF Downloads 283
470 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 376
469 Authigenic Mineralogy in Nubian Sandstone Reservoirs

Authors: Mohamed M. A. Rahoma

Abstract:

This paper presents the results of my sedimentological and petrographical study of the Nubian Formation in the north Gialo area in the Sirte basin in Libya that was used for identifying and recognizing the facies type and their changes through the studied interval. It also helped me to interpret the depositional processes and the depositional environments and describe the textural characteristics, detrital mineralogy, Authigenic mineralogy and porosity characteristics of the rocks within the cored interval. Thus, we can identify the principal controls on porosity and permeability within the reservoir sections for the studied interval. To achieve this study, I described the cores studied well and marked all features represented in color, grain size, lithology, and sedimentary structures and used them to identify the facies. Then, I chose a number of samples according to a noticeable change in the facies through the interval for microscopic investigation. The results of the microscopic investigation showed that the authigenic clays and the authigenic types of cement have an important influence on the reservoir quality by converting intergranular macropores to microporosity and reducing permeability. It is recommended to give these authigenic minerals more investigation in future studies since they have an essential influence on the potential of sandstones reservoirs.

Keywords: diagenesis processes, authigenic minerals, Nubian Sandstone, reservoir quality

Procedia PDF Downloads 105
468 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion

Authors: Bharti Saini, Sukanta K. Dash

Abstract:

In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.

Keywords: membrane, phase inversion method, polysulfone, porous structure

Procedia PDF Downloads 213
467 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: recycled aggregate, permeable concrete, compressive strength, permeability

Procedia PDF Downloads 187
466 Prevalence of Dens Evaginatus in Adolescent Population of Melaka: A Retrospective Study

Authors: Preethy Mary Donald, Renjith George Pallivathukal

Abstract:

Dens evaginatus (DE) is a rare developmental anomaly characterized by a slender enamel-covered tubercle which projects from the occlusal surface of an otherwise normal premolar. DE can often interfere normal occlusion and can lead to complications like sensitivity, pulpal exposure and temporo mandibular joint problems. The orthopantomographs (OPGs) and dental records of patients under the age of 20 who attended the faculty of dentistry, Melaka-Manipal Medical College were examined for DE. Results: The prevalence of DE was 23% among the study group. Males presented with a higher prevalence of 67% and females with 33%. The prevalence of Dens evaginatus was distributed as 28% in maxillary central incisor, 52% in maxillary lateral incisors, 12% in mandibular second premolars. Prevalence in permanent dentitions appeared to be higher than deciduous dentition. The bilateral occurrence of Dens evaginatus is an interesting phenomenon. 57% of the cases of the DE were bilateral.

Keywords: deciduous dentition, dens evaginatus, permanent dentition, prevalence

Procedia PDF Downloads 279
465 Are Oral Health Conditions Associated with Children’s School Performance and School Attendance in the Kingdom of Bahrain - A Life Course Approach

Authors: Seham A. S. Mohamed, Sarah R. Baker, Christopher Deery, Mario V. Vettore

Abstract:

Background: The link between oral health conditions and school performance and attendance remain unclear among Middle Eastern children. The association has been studied extensively in the Western region; however, several concerns have been raised regarding the reliability and validity of measures, low quality of studies, inadequate inclusion of potential confounders, and the lack of a conceptual framework. These limitations have meant that, to date, there has been no detailed understanding of the association or of the key social, clinical, behavioural and parental factors which may impact the association. Aim: To examine the association between oral health conditions and children’s school performance and attendance at Grade 2 in Muharraq city in the Kingdom of Bahrain using Heilmann et al.’s (2015) life course framework for oral health. Objectives: To (1) describe the prevalence of oral health conditions among 7-8 years old schoolchildren in the city of Muharraq; (2) analyse the social, biological, behavioural, and parental pathways that link early and current life exposures with children’s current oral health status; (3) examine the association between oral health conditions and school performance and attendance among schoolchildren; (4) explore the early and current life course social, biological, behavioural and parental factors associated with children’s school outcomes. Design: A time-ordered-cross-sectional study was conducted with 466 schoolchildren aged 7-8 years and their parents from Muharraq city in KoB. Data were collected through parents’ self-administered questionnaires, children’s face-face interviews, and dental clinical examinations. Outcome variables, including school performance and school attendance data, were obtained from the parents and school records. The data were analysed using structural equation modelling (SEM). Results: Dental caries, the consequence of dental caries (PUFA/pufa), and enamel developmental defects (EDD) prevalence were 93.4%, 25.7%, and 17.2%, respectively. The findings from the SEM showed that children born in families with high SES were less likely to suffer from dentine dental caries (β= -0.248) and more likely to earn high school performance (β= 0.136) at 7-8 years of age in Muharraq. From the current life course of children, the dental plaque was associated significantly and directly with enamel caries (β= 0.094), dentine caries (β= 0.364), treated teeth (filled or extracted because of dental caries) (β= 0.121), and indirectly associated with dental pain (β= 0.057). Further, dentine dental caries was associated significantly and directly with low school performance (β= -0.155). At the same time, the dental plaque was indirectly associated with low school performance via dental caries (β = −0.044). Conversely, treated teeth were associated directly with high school performance (β= 0.100). Notably, none of the OHCs, biological, SES, behavioural, or parental conditions was related to school attendance in children. Conclusion: The life course approach was adequate to examine the role of OHCs on children’s school performance and attendance. Birth and current (7-8-year-olds) social factors were significant predictors of poor OH and poor school performance.

Keywords: dental caries, life course, Bahrain, school outcomes

Procedia PDF Downloads 76
464 Influence of Silica Fume Addition on Concrete

Authors: Gaurav Datta, Sourav Ghosh, Rahul Roy

Abstract:

The incorporation of silica fume into the normal concrete is a routine one in the present days to produce the tailor made high strength and high performance concrete. The design parameters are increasing with the incorporation of silica fume in conventional concrete and the mix proportioning is becoming complex. The main objective of this paper has been made to investigate the different mechanical properties like compressive strength, permeability, porosity, density, modulus of elasticity, compacting factor, slump of concrete incorporating silica fume. In this present paper 5 (five) mix of concrete incorporating silica fume is cast to perform experiments. These experiments were carried out by replacing cement with different percentages of silica fume at a single constant water-cementitious materials ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15% and 20% for water-cementitious materials (w/cm) ratio for 0.40. For all mixes compressive strengths were determined at 24 hours, 7 and 28 days for 100 mm and 150 mm cubes. Other properties like permeability, porosity, density, modulus of elasticity, compacting factor, and slump were also determined for five mixes of concrete.

Keywords: high performance concrete, high strength concrete, silica fume, strength

Procedia PDF Downloads 263
463 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 194
462 Optimisation of Nitrogen as a Protective Gas via the Alternating Shielding Gas Technique in the Gas Metal Arc Welding Process

Authors: M. P. E. E Silva, A. M. Galloway, A. I. Toumpis

Abstract:

An increasing concern exists in the welding industry in terms of faster joining processes. Methods such as the alternation between shielding gases such Ar, CO₂ and He have been able to provide improved penetration of the joint, reduced heat transfer to the workpiece, and increased travel speeds of the welding torch. Nitrogen as a shielding gas is not desirable due to its reactive behavior within the arc plasma, being absorbed by the molten pool during the welding process. Below certain amounts, nitrogen is not harmful. However, the nitrogen threshold is reduced during the solidification of the joint, and if its subsequent desorption is not completed on time, gas entrapment and blowhole formation may occur. The present study expanded the use of the alternating shielding gas method in the gas metal arc welding (GMAW) process by alternately supplying Ar/5%N₂ and He. Improvements were introduced in terms of joint strength and grain refinement. Microstructural characterization findings showed porosity-free welds with reduced inclusion formation while mechanical tests such as tensile and bend tests confirmed the reinforcement of the joint by the addition of nitrogen. Additionally, significant reductions of the final distortion of the workpiece were found after the welding procedure as well as decreased heat affected zones and temperatures of the weld.

Keywords: alternating shielding gas method, GMAW, grain refinement, nitrogen, porosity, mechanical testing

Procedia PDF Downloads 86
461 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties

Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich

Abstract:

Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.

Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis

Procedia PDF Downloads 79
460 An Integrated Modular Approach Based Simulation of Cold Heavy Oil Production

Authors: Hamidreza Sahaleh

Abstract:

In this paper, the authors display an incorporated secluded way to deal with quantitatively foresee volumetric sand generation and improved oil recuperation. This model is in light of blend hypothesis with erosion mechanics, in which multiphase hydrodynamics and geo-mechanics are coupled in a predictable way by means of principal unknowns, for example, saturation, pressure, porosity, and formation displacements. Foamy oil is demonstrated as a scattering of gas bubbles caught in the oil, where these gas air bubbles keep up a higher repository weight. A secluded methodology is then received to adequately exploit the current propelled standard supply and stress-strain codes. The model is actualized into three coordinated computational modules, i.e. erosion module, store module, and geo-mechanics module. The stress, stream and erosion mathematical statements are understood independently for every time addition, and the coupling terms (porosity, penetrability, plastic shear strain, and so on) are gone among them and iterated until certain union is accomplished on a period step premise. The framework is capable regarding its abilities, yet practical in terms of computer requirements and maintenance. Numerical results of field studies are displayed to show the capacities of the model. The impacts of foamy oil stream and sand generation are additionally inspected to exhibit their effect on the upgraded hydrocarbon recuperation.

Keywords: oil recuperation, erosion mechanics, foamy oil, erosion module.

Procedia PDF Downloads 246
459 Investigation of Changes of Physical Properties of the Poplar Wood in Radial and Longitudinal Axis at Chaaloos Zone

Authors: Afshin Veisi

Abstract:

In this study, the physical properties of wood in poplar wood (Populous sp.) were analyzed in longitudinal and radial directions of the stem. Three Populous Alba tree were cut in chaloos zone and from each tree, 3 discs were selected at 130cm, half of tree and under of crown. The test samples from pith to bark (heartwood to sapwood) were prepared from these discs for measuring the involved properties such as, wet, dry and critical specific gravity, porosity, volume shrinkage and swelling based on the ASTM standard, and data in two radial and longitudinal directions in the trank were statistically analyzed. Such as, variations of wet, dry and critical specific gravity had in radial direction respectively: irregular increase, increase and increase, and in longitudinal direction respectively: irregular decrease, irregular increase and increase. Results of variations to moisture content and porosity show that in radial direction respectively: irregular increasing and decreasing, and in longitudinal direction from down to up respectively: irregular decreasing and stability. Volume shrinkage and swelling variations show in radial direction irregular and in longitudinal axial regular decreasing.

Keywords: poplar wood, physical properties, shrinkage, swelling, critical specific gravity, wet specific gravity, dry specific gravity

Procedia PDF Downloads 252
458 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 416
457 Soil Properties and Yam Performance as Influenced by Poultry Manure and Tillage on an Alfisol in Southwestern Nigeria

Authors: E. O. Adeleye

Abstract:

Field experiments were conducted to investigate the effect of soil tillage techniques and poultry manure application on the soil properties and yam (Dioscorea rotundata) performance in Ondo, southwestern Nigeria for two farming seasons. Five soil tillage techniques, namely ploughing (P), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and zero-tillage (ZT) each combined with and without poultry manure at the rate of 10 tha-1 were investigated. Data were obtained on soil properties, nutrient uptake, growth and yield of yam. Soil moisture content, bulk density, total porosity and post harvest soil chemical characteristics were significantly (p>0.05) influenced by soil tillage-manure treatments. Addition of poultry manure to the tillage techniques in the study increased soil total porosity, soil moisture content and reduced soil bulk density. Poultry manure improved soil organic matter, total nitrogen, available phosphorous, exchangeable Ca, k, leaf nutrients content of yam, yam growth and tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that the possible deleterious effect of tillage on soil properties, growth and yield of yam on an alfisol in southwestern Nigeria can be reduced by combining tillage with poultry manure.

Keywords: poultry manure, tillage, soil chemical properties, yield

Procedia PDF Downloads 419
456 Modification of Toothpaste Formula Using Pineapple Cobs and Eggshell Waste as a Way to Decrease Dental Caries

Authors: Achmad Buhori, Reza Imam Pratama, Tissa Wiraatmaja, Wanti Megawati

Abstract:

Data from many countries indicates that there is a marked increase of dental caries. The increases in caries appear to occur in lower socioeconomic groups. It is possible that the benefits of prevention of dental caries are not reaching these groups. However, there is a way to decrease dental caries by adding 5% of bromelain and calcium as an active agent in toothpaste. Bromelain can break glutamine-alanine bond and arginine-alanine bond which is a constituent of amino acid that causes dental plague which is one of the factors of dental caries. Calcium help rebuilds the teeth by strengthening and repairing enamel. Bromelain can be found from the extraction of pineapple (Ananas comosus) cobs (88.86-94.22 % of bromelain recovery during extraction based on the enzyme unit) and calcium can be taken from eggshell (95% of dry eggshell consist of calcium). The aim of this experiment is to make a toothpaste which contains bromelain and calcium as an effective, cheap, and healthy way to decrease dental caries around the world.

Keywords: bromelain, calcium, dental caries, dental plague, toothpaste

Procedia PDF Downloads 235
455 Durability of a Cementitious Matrix Based on Treated Sediments

Authors: Mahfoud Benzerzour, Mouhamadou Amar, Amine Safhi, Nor-Edine Abriak

Abstract:

Significant volumes of sediment are annually dredged in France and all over the world. These materials may, in fact, be used beneficially as supplementary cementitious material. This paper studies the durability of a new cement matrix based on marine dredged sediment of Dunkirk-Harbor (north of France). Several techniques are used to characterize the raw sediment such as physical properties, chemical analyses, and mineralogy. The XRD analysis revealed quartz, calcite, kaolinite as main mineral phases. In order to eliminate organic matter and activate some of those minerals, the sediment is calcined at a temperature of 850°C for 1h. Moreover, four blended mortars were formulated by mixing a portland cement (CEM I 52,5 N) and the calcined sediment as partial cement substitute (0%, 10%, 20% and 30%). Reference mortars, based on the blended cement, were then prepared. This re-use cannot be substantiating and efficient without a durability study. In this purpose, the following tests, mercury porosity, accessible water porosity, chloride permeability, freezing and thawing, external sulfate attack, alkali aggregates reaction, compressive and bending strength tests were conducted on those mortars. The results of most of those tests evidenced the fact that the mortar that contains 10% of the treated sediment is efficient and durable as the reference mortar itself. That would infer that the presence of these calcined sediment improves mortar general behavior.

Keywords: sediment, characterization, calcination, substitution, durability

Procedia PDF Downloads 226
454 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 93
453 Polymerspolyaniline/CMK-3/Hydroquinone Composite Electrode for Supercapacitor Application

Authors: Hu-Cheng Weng, Jhen-Ting Huang, Chia-Chia Chang, An-Ya Lo

Abstract:

In this study, carbon mesoporous material, CMK-3, was adopted as supporting material for electroactive polymerspolyaniline (PANI), polyaniline, for supercapacitor application, where hydroquinone (HQ) was integrated to enhance the redox reaction of PANI. The results show that the addition of PANI improves the capacitance of electrode from 89 F/g (CMK-3) to 337 F/g (PANI/CMK-3), the addition of HQ furtherly improves the capacitance to 463 F/g (PANI/CMK-3/HQ). The PANI provides higher energy density and also acts as binder of the electrode; the CMK-3 provides higher electron double layer capacitance EDLC and stabilize the polyaniline by its highly porosity. With the addition of HQ, the capacitance of PANI/CMK-3 was further enhanced. In-situ analyses including cyclic voltammetry (CV), chronopotentiometry (CP), electron impedance spectrum (EIS) analyses were applied for electrode performance examination. For materials characterization, the crystal structure, morphology, microstructure, and porosity were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), and 77K N2 adsorption/desorption analyses, respectively. The effects of electrolyte pH value, PANI polymerization time, HQ concentration, and PANI/CMK-3 ratio on capacitance were discussed. The durability was also studied by long-term operation test. The results show that PANI/CMK-3/HQ with great potential for supercapacitor application. Finally, the potential of all-solid PANI/CMK-3/HQ based supercapacitor was successfully demonstrated.

Keywords: CMK3, PANI, redox electrolyte, solid supercapacitor

Procedia PDF Downloads 109
452 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 51
451 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 146
450 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 411
449 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method

Authors: W. H. Zheng, J. Li, F. J. Hong

Abstract:

Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.

Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method

Procedia PDF Downloads 136