Search results for: date palm fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2568

Search results for: date palm fiber

2388 The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin

Authors: Min Ho Kwon, Woo Young Jung, Hyun Su Seo

Abstract:

A Polymer Cement Mortar (PCM) has been widely used as the material of repair and restoration work for concrete structure; however a PCM usually induces an environmental pollutant. Therefore, there is a need to develop PCM which is less impact to environments. Usually, UM resin is known to be harmless to the environment. Accordingly, in this paper, the properties of the PCM using UM resin were studied. The general cement mortar and UM resin was mixed in the specified ratio. A certain percentage of PVA fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were added to enhance the flexural strength. The flexural tests were performed in order to investigate the flexural strength of each PCM. Experimental results showed that the strength of proposed PCM using UM resin is improved when they are compared with general cement mortar.

Keywords: polymer cement mortar, UM resin, compressive strength, PVA fiber, steel fiber

Procedia PDF Downloads 311
2387 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.

Keywords: palm oil, fatty acid, NIRS, PLSR

Procedia PDF Downloads 183
2386 Institutional and Technological Factors Influencing the Adoption of Tenera Oil Palm Practices: Gender Analysis Smallholder Farmers in Edo State, Nigeria

Authors: Cornelius Michael Ekenta

Abstract:

The study determined institutional and technological factors that influence the adoption of tenera oil palm production practices with a gender dimension among smallholder farmers in Edo State, Nigeria. Primary data were generated with use of questionnaire administered to 155 males and 137 female respondents. Results show that the level of adoption of tenera oil palm production practices was low for both male and females. Tobi regression result shows that land ownership structure and affordability at 1% significance influenced male adoption of tenera oil palm production practices while age and level of income at 1% significance influenced female in the adoption. The major roles of male as reported in adopting process were purchase of seedlings, clearing of bush for planting and selling of cut bunches while the major roles of female were periodic weeding, gathering of cut bunches and mulching of palm field. The major constraint faced by male in adoption process were high cost of labour while for females is drudgery nature of the work. The study recommended that the Land Use Act of 1978 should be enforced to help women and non-indigenes to have sizeable farm lands, Government should empower Agricultural Development Programme (ADP) by employing more extension personnel to increase their contacts with the farmers.

Keywords: gender, adoption, variety, oil, tenera, Edo

Procedia PDF Downloads 61
2385 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions

Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim

Abstract:

In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties

Procedia PDF Downloads 292
2384 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations

Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim

Abstract:

Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.

Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy

Procedia PDF Downloads 54
2383 The Effects of Neurospora crassa-Fermented Palm Kernel Cake in the Diet on the Production Performance and Egg-Yolk Quality of Arab Laying-Hens

Authors: Yose Rizal, Nuraini, Mirnawati, Maria Endo Mahata, Rio Darman, Dendi Kurniawan

Abstract:

An experiment had been conducted to determine the effects of several levels of Neurospora crassa- fermented palm kernel cake in the diet on the production performance and egg-yolk quality of Arab laying-hens, and to obtain the appropriate level of this fermented palm kernel cake for reducing the utilization of concentrated feed in the diet. Three hundred Arab laying-hens of 72 weeks old were employed in this experiment, and randomly assigned to four treatments (0, 7.25, 10.15, and 13.05% fermented palm kernel cake in diets) in a completely randomized design with five replicates. Measured variables were production performance (feed consumption, egg-mass production, feed conversion, egg weight and hen-day egg production), and egg-yolk quality (ether extract and cholesterol contents, and egg-yolk color index). Results of experiment indicated that feed consumption, egg-mass production, feed conversion, egg weight, hen-day egg production and egg-yolk color index were not influenced (P>0.05) by diets. However, the ether extract and cholesterol contents of egg-yolk were very significantly reduced (P<0.01) by diets. In conclusion, Neurospora crassa-fermented palm kernel cake could be included up to 13.05% to effectively replace 45% concentrated feed in Arab laying-hens diet without adverse effect on the production performance.

Keywords: neurospora crassa-fermented palm kernel cake, Arab laying-hens, production performance, ether extract, cholesterol, egg-yolk color index

Procedia PDF Downloads 711
2382 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 480
2381 Evaluation of Yield and Yield Components of Malaysian Palm Oil Board-Senegal Oil Palm Germplasm Using Multivariate Tools

Authors: Khin Aye Myint, Mohd Rafii Yusop, Mohd Yusoff Abd Samad, Shairul Izan Ramlee, Mohd Din Amiruddin, Zulkifli Yaakub

Abstract:

The narrow base of genetic is the main obstacle of breeding and genetic improvement in oil palm industry. In order to broaden the genetic bases, the Malaysian Palm Oil Board has been extensively collected wild germplasm from its original area of 11 African countries which are Nigeria, Senegal, Gambia, Guinea, Sierra Leone, Ghana, Cameroon, Zaire, Angola, Madagascar, and Tanzania. The germplasm collections were established and maintained as a field gene bank in Malaysian Palm Oil Board (MPOB) Research Station in Kluang, Johor, Malaysia to conserve a wide range of oil palm genetic resources for genetic improvement of Malaysian oil palm industry. Therefore, assessing the performance and genetic diversity of the wild materials is very important for understanding the genetic structure of natural oil palm population and to explore genetic resources. Principal component analysis (PCA) and Cluster analysis are very efficient multivariate tools in the evaluation of genetic variation of germplasm and have been applied in many crops. In this study, eight populations of MPOB-Senegal oil palm germplasm were studied to explore the genetic variation pattern using PCA and cluster analysis. A total of 20 yield and yield component traits were used to analyze PCA and Ward’s clustering using SAS 9.4 version software. The first four principal components which have eigenvalue >1 accounted for 93% of total variation with the value of 44%, 19%, 18% and 12% respectively for each principal component. PC1 showed highest positive correlation with fresh fruit bunch (0.315), bunch number (0.321), oil yield (0.317), kernel yield (0.326), total economic product (0.324), and total oil (0.324) while PC 2 has the largest positive association with oil to wet mesocarp (0.397) and oil to fruit (0.458). The oil palm population were grouped into four distinct clusters based on 20 evaluated traits, this imply that high genetic variation existed in among the germplasm. Cluster 1 contains two populations which are SEN 12 and SEN 10, while cluster 2 has only one population of SEN 3. Cluster 3 consists of three populations which are SEN 4, SEN 6, and SEN 7 while SEN 2 and SEN 5 were grouped in cluster 4. Cluster 4 showed the highest mean value of fresh fruit bunch, bunch number, oil yield, kernel yield, total economic product, and total oil and Cluster 1 was characterized by high oil to wet mesocarp, and oil to fruit. The desired traits that have the largest positive correlation on extracted PCs could be utilized for the improvement of oil palm breeding program. The populations from different clusters with the highest cluster means could be used for hybridization. The information from this study can be utilized for effective conservation and selection of the MPOB-Senegal oil palm germplasm for the future breeding program.

Keywords: cluster analysis, genetic variability, germplasm, oil palm, principal component analysis

Procedia PDF Downloads 141
2380 Enzymatic Remediation in Standard Crude Palm Oil for Superior Quality Oil

Authors: Haniza Ahmad, Norliza Saparin, Ahmadilfitri Md Noor, Mohd Suria Affandi Yusoff

Abstract:

Enzymatic remediation is applied in low free fatty acid (FFA) (<4%) crude palm oil (CPO) to investigate if further FFA reduction is able to take place to produce premium CPO (<1% FFA). There are four different lipase Candida Antartica brands used in this study. Samples submit to enzymatic remediation using rotary evaporator under 100mbar vacuum with rotation at 260rpm. Samples were taken at 4hours, 8hours and 24hours for analyses. FFA less than 1% was achieved after 24hours reaction with 1% enzyme and 2% glycerol. The FFA reduction was intensified with the presence of glycerol who provides more sites for fatty acid attachment. At 2% glycerol, 71-88% FFA was reduced whereas at 1% glycerol, 46-75% FFA reduced. However, partial glycerides was increased with presence of glycerol with 2% add in glycerol showed greater partial glycerides increment compared to 1% glycerol.

Keywords: enzymes, crude palm oil, free fatty acid, glycerol

Procedia PDF Downloads 298
2379 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber

Procedia PDF Downloads 328
2378 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 181
2377 Effects of Palm Waste Ash Residues on Acidic Soil in Relation to Physiological Responses of Habanero Chili Pepper (Capsicum chinense jacq.)

Authors: Kalu Samuel Ukanwa, Kumar Patchigolla, Ruben Sakrabani

Abstract:

The use of biosolids from thermal conversion of palm waste for soil fertility enhancement was tested in acidic soil of Southern Nigeria for the growing of Habanero chili pepper (Capsicum chinense jacq.). Soil samples from the two sites, showed pH 4.8 and 4.8 for site A and B respectively, below 5.6-6.8 optimum range and other fertility parameters indicating a low threshold for pepper growth. Nursery planting was done at different weeks to determine the optimum planting period. Ash analysis showed that it contains 26% of total K, 20% of total Ca, 0.27% of total P, and pH 11. The two sites were laid for an experiment in randomized complete block design and setup with three replications side by side. Each plot measured 3 x 2 m and a total of 15 plots for each site, four treatments, and one control. Outlined as control, 2, 4, 6 and 8 tonnes/hectare of palm waste ash, the combined average for both sites with correspondent yield after six harvests in one season are; 0, 5.8, 6, 6, 14.5 tonnes/hectare respectively to treatments. Optimum nursery survival rate was high in July; the crop yield was linear to the ash application. Site A had 6% yield higher than site B. Fruit development, weight, and total yield in relation to the control plot showed that palm waste ash is effective for soil amendment, nutrient delivery, and exchange.

Keywords: ash, palm waste, pepper, soil amendment

Procedia PDF Downloads 109
2376 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential

Authors: Rasheed Amao Busari, Ahmed Ibrahim

Abstract:

The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.

Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit

Procedia PDF Downloads 50
2375 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites

Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou

Abstract:

Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.

Keywords: biopolymer, composites, alcali treatment, mechanical properties

Procedia PDF Downloads 101
2374 Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)

Authors: S. Yousefi Oderji, B. Chen

Abstract:

According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC.

Keywords: RPC, PP, flexural toughness, toughness index

Procedia PDF Downloads 314
2373 Modeling Study of Short Fiber Orientation in Simple Injection Molding Processes

Authors: Ihsane Modhaffar, Kamal Gueraoui, Abouelkacem Qais, Abderrahmane Maaouni, Samir Men-La-Yakhaf, Hamid Eltourroug

Abstract:

The main objective of this paper is to develop a Computational Fluid Dynamics (CFD) model to simulate and characterize the fiber suspension in flow in rectangular cavities. The model is intended to describe the velocity profile and to predict the fiber orientation. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The numerical model for determination of velocity profile and fiber orientation during mold-filling stage of injection molding process was solved using finite volume method. The governing equations of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 444
2372 Palm Oil Production Sustainability in Delta State Nigeria

Authors: Omuvwie R. Ewien

Abstract:

Palm oil production in Delta State, Nigeria, is a significant economic activity. However, ensuring its sustainability is crucial to mitigate environmental impacts, promote social equity, and maintain long-term economic viability. This abstract provides an overview of palm oil production sustainability in Delta State, focusing on environmental, social, and economic aspects. In terms of environmental sustainability, the impact of palm oil plantations on deforestation and biodiversity loss is explored. The adoption of sustainable land use practices and measures to reduce greenhouse gas emissions, such as conserving high conservation value areas and utilizing methane capture systems, are highlighted. Social sustainability considerations encompass the inclusion and empowerment of smallholders, ensuring fair labor practices and community engagement. Supporting small-scale farmers, promoting fair working conditions, and investing in local infrastructure and services are identified as key strategies. Economic sustainability is emphasized through yield improvement, efficiency, and value addition. Enhancing productivity and profitability for farmers, promoting downstream processing and market diversification, and building economic resilience is crucial for long-term sustainability. Government policies, including regulatory frameworks and public-private collaborations, play a pivotal role in promoting sustainable palm oil production. Enabling policies and partnerships with industry stakeholders and NGOs facilitates the adoption of sustainable practices. Challenges such as illegal activities, the need to balance economic development with environmental conservation, and leveraging technology for sustainability are discussed. The abstract concludes by emphasizing the importance of stakeholders' commitment to prioritize sustainable palm oil production in Delta State, Nigeria, for a sustainable future.

Keywords: palm oil production, environmental sustainability, community development, yield improvement, future outlook

Procedia PDF Downloads 62
2371 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 354
2370 A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced.

Keywords: composite, hemp, interface, pull-out, processing, polypropylene, temperature

Procedia PDF Downloads 365
2369 Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber

Authors: Qihang Zeng, Wei Xu, Ying Shen, Changyuan Yu

Abstract:

In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹.

Keywords: curvature, four mode fiber, highly sensitive, modal interferometer

Procedia PDF Downloads 167
2368 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor

Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap

Abstract:

Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor.  It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.

Keywords: biodiesel, palm oil, transesterification, oscillatory baffled reactor

Procedia PDF Downloads 148
2367 Analytical Investigation of Ductility of Reinforced Concrete Beams Strengthening with Polypropylene Fibers

Authors: Rifat Sezer, Abdulhamid Aryan

Abstract:

The purpose of this study is to research both the ductility of the reinforced concrete beams without fiber and the ductility of the reinforced concrete beams with fiber. For this purpose, the analytical load - displacement curves of the beams were formed and the areas under these curves were compared. According to the results of this comparison, it is concluded that the reinforced concrete beams with polypropylene fiber are more ductile. The dimension of the used beam-samples for analytical model in this study is 20x30 cm, their length is 200 cm and their scale is ½. The reinforced concrete reference-beams are produced as one item and the reinforced concrete beams with P-0.60 kg/m3 polypropylene fiber are produced as one item. The modeling of reinforced concrete beams was utilized with Abaqus software.

Keywords: polypropylene, fiber-reinforced beams, strengthening of the beams, abaqus program

Procedia PDF Downloads 469
2366 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 92
2365 Synthesis of Biolubricant Base Stock from Palm Methyl Ester

Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris

Abstract:

The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.

Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties

Procedia PDF Downloads 427
2364 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun

Abstract:

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

Keywords: process planning, weighted scheduling, weighted due-date assignment, simulated annealing, evolutionary strategies, hybrid searches

Procedia PDF Downloads 434
2363 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP

Authors: Faisal Islam, J. Ramkumar

Abstract:

The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.

Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)

Procedia PDF Downloads 489
2362 Application of Crude Palm Oil Liquid Sludge Sewage On Maize (Zea mays. L) as Re-Cycle Possibility to Fertilizer

Authors: Hasan Basri Jumin, Henni Rosneti, Agusnimar

Abstract:

Crude palm oil liquid sludge sewage was treated to maize with 400 cc/plant could be increased mean relative growth rates, net assimilation rate, leaf area and dry weight of seed. There are indicated that 400 cc / plant treated to maize significantly increase the average of mean relative growth rates into 0.32 g.day-1. Net assimilation rates increase from 13.5 mg.m-2.day-1 into 34.5 mg.m-2.day-1, leaf area at 50 days after planting increase from 1419 cm-2 into 2458 cm-2 and dry weight of seed from 38 g per plant into 43 g per plant. Crude palm oil liquid sludge waste chemical analysis indicated that, there are no exceed threshold content of dangerous metals and biology effects. Cadmium content as heavy metal is lower than threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. Biological oxygen demands and chemical oxygen demands as indicators for micro-organism activities, there are under the threshold of human healthy tolerance.

Keywords: crude-palm-oil, fertilizer, liquid-sludge, maize, pollutant, waste

Procedia PDF Downloads 541
2361 Pyrolysis and Combustion Kinetics of Palm Kernel Shell Using Thermogravimetric Analysis

Authors: Kanit Manatura

Abstract:

The combustion and pyrolysis behavior of Palm Kernel Shell (PKS) were investigated in a thermogravimetric analyzer. A 10 mg sample of each biomass was heated from 30 °C to 800 °C at four heating rates (within 5, 10, 15 and 30 °C/min) in nitrogen and dry air flow of 20 ml/min instead of pyrolysis and combustion process respectively. During pyrolysis, thermal decomposition occurred on three different stages include dehydration, hemicellulose-cellulose and lignin decomposition on each temperature range. The TG/DTG curves showed the degradation behavior and the pyrolysis/combustion characteristics of the PKS samples which led to apply in thermogravimetric analysis. The kinetic factors including activation energy and pre-exponential factor were determined by the Coats-Redfern method. The obtained kinetic factors are used to simulate the thermal decomposition and compare with experimental data. Rising heating rate leads to shift the mass loss towards higher temperature.

Keywords: combustion, palm kernel shell, pyrolysis, thermogravimetric analyzer

Procedia PDF Downloads 198
2360 Effects of Virgin Coconut Oil on the Histomorphometric Parameters in the Aortae and Hearts of Rats Fed with Repeatedly Heated Palm Oil

Authors: K. Subermaniam, Q. H. M. Saad, S. N. A. Bakhtiar, J. A. Hamid, F. Z .J. Sidek, F. Othman

Abstract:

Objective: To investigate the effects of virgin coconut oil (VCO) on histomorphometric changes in the aorta and heart of thermoxidized palm oil-fed rats. Methods: Thirty two male Sprague-Dawley rats were divided into four groups: control group fed with normal diet; 5 times heated palm oil-fed group (5HPO) fortified with 15% w/w of 5HPO; VCO group supplemented with 1.42 ml/kg of VCO; and 5HPO + VCO group. The treatment lasted for four months. Upon sacrifice, aortic and heart tissues were processed for light microscopic studies. Results: Light microscopic studies showed thickened intima and media of the aorta in two out of eight rats in the 5HPO group only, while the rest of the rats did not show any thickening of either the intima or media of the aorta. Intima media area (IMA) in the VCO, 5HPO and 5HPO+VCO was significantly increased compared to the control group. Circumferential wall tension (CWT) and tensile stress (TS) in the aorta of 5HPO showed significant increase compared to the other groups. Cardiomyofibre width in 5HPO group showed significant increase in size compared to the control, VCO and 5HPO+VCO groups. Cardiomyofibre nuclear size in the 5HPO group decreased in size significantly compared to the control, VCO and 5HPO+VCO groups. Conclusion: VCO supplementation at a dose of 1.42 ml/kg showed protectives effect on the aorta and heart of thermoxidized palm oil fed rats.

Keywords: aorta, heart, histomorphometric changes, thermoxidized palm oil, virgin coconut oil

Procedia PDF Downloads 404
2359 Cadaver Free Fatty Acid Distribution Associated with Burial in Mangrove and Oil Palm Plantation Soils under Tropical Climate

Authors: Siti Sofo Ismail, Siti Noraina Wahida Mohd Alwi, Mohamad Hafiz Ameran, Masrudin M. Yusoff

Abstract:

Locating clandestine cadaver is crucially important in forensic investigations. However, it requires a lot of man power, costly and time consuming. Therefore, the development of a new method to locate the clandestine graves is urgently needed as the cases involve burial of cadaver in different types of soils under tropical climates are still not well explored. This study focused on the burial in mangrove and oil palm plantation soils, comparing the fatty acid distributions in different soil acidities. A stimulated burial experiment was conducted using domestic pig (Sus scrofa) to substitute human tissues. Approximately 20g of pig fatty flesh was allowed to decompose in mangrove and oil palm plantation soils, mimicking burial in a shallow grave. The associated soils were collected at different designated sampling points, corresponding different decomposition stages. Modified Bligh-Dyer Extraction method was applied to extract the soil free fatty acids. Then, the obtained free fatty acids were analyzed with gas chromatography-flame ionization (GC-FID). A similar fatty acid distribution was observed for both mangrove and oil palm plantations soils. Palmitic acid (C₁₆) was the most abundance of free fatty acid, followed by stearic acid (C₁₈). However, the concentration of palmitic acid (C₁₆) higher in oil palm plantation compare to mangrove soils. Conclusion, the decomposition rate of cadaver can be affected by different type of soils.

Keywords: clandestine grave, burial, soils, free fatty acid

Procedia PDF Downloads 368