Search results for: dark fermentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 807

Search results for: dark fermentation

687 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent

Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim

Abstract:

In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.

Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation

Procedia PDF Downloads 337
686 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 286
685 About the Number of Fundamental Physical Interactions

Authors: Andrey Angorsky

Abstract:

In the article an issue about the possible number of fundamental physical interactions is studied. The theory of similarity on the dimensionless quantity as the damping ratio serves as the instrument of analysis. The structure with the features of Higgs field comes out from non-commutative expression for this ratio. The experimentally checked up supposition about the nature of dark energy is spoken out.

Keywords: damping ratio, dark energy, dimensionless quantity, fundamental physical interactions, Higgs field, non-commutative expression

Procedia PDF Downloads 133
684 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor

Authors: J. Ritonja

Abstract:

The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.

Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification

Procedia PDF Downloads 117
683 Enhanced Production of Nisin by Co-culture of Lactococcus Lactis Sub SP. Lactis and Yarrowia Lipolytica in Molasses Based Medium

Authors: Mehdi Ariana, Javad Hamedi

Abstract:

Nisin is a commercial bacteriocin that is used as a food preservative and produced by Lactococcus lactis subsp. lactis. Nisin production through co-culture fermentation can be performed for increasing nisin quantities. Since lactate accumulation in the fermentation medium can prevent L. lactis growth and therefore reduce nisin production, the simultaneous culture of microorganisms can enhance L. lactis growth by a reduction in the amount of lactic acid. In this study, conducted coculture of L.lactis subsp. lactic and the yeast Yarrowia lipolytica. Both strains are cultured in a molasses-based medium that is mainly constructed of sucrose. Y. lipolytica is not able to use sucrose as a carbon source but is able to consume lactate and decrease lactic acid in the medium. So, Lactic acid consumption can increase pH value and stimulate L. lactis growth. The results showed the mixed culture increased L. lactis growth 6 times higher than that of pure culture and could enhance nisin activity by up to 40%.

Keywords: co-culture fermentation, lactococcus lactis subsp lactis, yarrowia lipolytica, nisin

Procedia PDF Downloads 105
682 Bioproduction of Phytohormones by Liquid Fermentation Using a Mexican Strain of Botryodiplodia theobromae

Authors: Laredo Alcalá Elan Iñaky, Hernandez Castillo Daniel, Martinez Hernandez José Luis, Arredondo Valdes Roberto, Gonzalez Gallegos Esmeralda, Anguiano Cabello Julia Cecilia

Abstract:

Plant hormones are a group of molecules that control different processes ranging from the growth and development of the plant until their response to biotic and abiotic stresses. In this study, the capacity of production of various phytohormones was evaluated from a strain of Botryodiplodia theobromae by liquid fermentation system using the modified Mierch medium added with a hydrolyzate compound of mead all in a reactor without agitation at 28 °C for 15 days. Quantification of the metabolites was performed using high performance liquid chromatography techniques. The results showed that a microbial broth with at least five different types of plant hormones was obtained: gibberellic acid, zeatin, kinetin, indoleacetic acid and jasmonic acid, the last one was higher than the others metabolites produced. The production of such hormones using a single type of microorganism could be in the future a great alternative to reduce production costs and similarly reduce the use of synthetic chemicals.

Keywords: biosystem, plant hormones, Botryodiplodia theobromae, fermentation

Procedia PDF Downloads 398
681 Comparative Study on Sensory Profiles of Liquor from Different Dried Cocoa Beans

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Malaysian dried cocoa beans have been reported to have low quality flavour and are often sold at discounted prices. Various efforts have been made to improve the Malaysian beans quality. Among these efforts is introduction of the shallow box fermentation technique and pulp preconditioned through pods storage. However, after nearly four decades of the effort was done, Malaysian cocoa farmers still received lower prices for their beans. So, this study was carried out in order to assess the flavour quality of dried cocoa beans produced by shallow box fermentation techniques, combination of shallow box fermentation with pods storage and compared to dried cocoa beans obtained from Ghana. A total of eight samples of dried cocoa was used in this study, which one of the samples was Ghanaian beans (coded with no.8), while the rest were Malaysian cocoa beans with different post-harvest processing (coded with no. 1, 2, 3, 4, 5, 6 and 7). Cocoa liquor was prepared from all samples in the prescribed techniques and sensory evaluation was carried out using Quantitative Descriptive Analysis (QDA) Method with 0-10 scale by Malaysian Cocoa Board trained panelist. Sensory evaluation showed that cocoa attributes for all cocoa liquors ranging from 3.5 to 5.3, whereas bitterness was ranging from 3.4 to 4.6 and astringent attribute ranging from 3.9 to 5.5, respectively. Meanwhile, all cocoa liquors were having acid or sourness attribute ranging from 1.6 to 3.6, respectively. In general cocoa liquor prepared from sample coded no 4 has almost similar flavour profile and no significantly different at p < 0.05 with Ghana, in term of most flavour attributes as compared to the other six samples.

Keywords: cocoa beans, flavour, fermentation, shallow box, pods storage

Procedia PDF Downloads 385
680 The Big Bang Was Not the Beginning, but a Repeating Pattern of Expansion and Contraction of the Spacetime

Authors: Amrit Ladhani

Abstract:

The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless cycles of expansion and cooling, each beginning with a “big bang” and ending in a “big crunch”. In this paper, we propose a unique property of Space-time. This particular and marvelous nature of space shows us that space can stretch, expand, and shrink. This property of space is caused by the size of the universe change over time: growing or shrinking. The observed accelerated expansion, which relates to the stretching of Shrunk space for the new theory, is derived. This theory is based on three underlying notions: First, the Big Bang is not the beginning of Space-time, but rather, at the very beginning fraction of a second, there was an infinite force of infinite Shrunk space in the cosmic singularity that force gave rise to the big bang and caused the rapidly growing of space, and all other forms of energy are transformed into new matter and radiation and a new period of expansion and cooling begins. Second, there was a previous phase leading up to it, with multiple cycles of contraction and expansion that repeat indefinitely. Third, the two principal long-range forces are the gravitational force and the repulsive force generated by shrink space. They are the two most fundamental quantities in the universe that govern cosmic evolution. They may provide the clockwork mechanism that operates our eternal cyclic universe. The universe will not continue to expand forever; no need, however, for dark energy and dark matter. This new model of Space-time and its unique properties enables us to describe a sequence of events from the Big Bang to the Big Crunch.

Keywords: dark matter, dark energy, cosmology, big bang and big crunch

Procedia PDF Downloads 74
679 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.

Keywords: microwave radiation, biogas, methane fermentation, biomass

Procedia PDF Downloads 524
678 A Novel Marketable Dried Mixture for High-Quality Sweet Wine Production in Domestic Refrigerator Using Tubular Cellulose

Authors: Ganatsios Vassilios, Terpou Antonia, Maria Kanellaki, Bekatorou Argyro, Athanasios Koutinas

Abstract:

In this study, a new fermentation technology is proposed with potential application in home wine-making. Delignified cellulosic material was used to preserve Tubular Cellulose (TC), an effective fermentation support material in high osmotic pressure, low temperature, and alcohol concentration. The psychrotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 was immobilized on TC to preserve a novel home wine making biocatalyst (HWB) and the entrapment was examined by SEM. Various concentrations of HWB was added in high-density grape must and the mixture was dried immediately. The dried mixture was stored for various time intervals and its fermentation examined after addition of potable water. The percentage of added water was also examined to succeed high alcohol and residual sugar concentration. The effect of low temperature (1-10 oC) on fermentation kinetics was studied revealing the ability of HBW on low-temperature sweet wine making. Sweet wines SPME GC-MS analysis revealed the promotion effect of TC on volatile by-products formation in comparison with free cells. Kinetics results and aromatic profile of final product encouraged the efforts of high-quality sweet wine making in domestic refrigerator and potential marketable opportunities are also assessed and discussed.

Keywords: tubular cellulose, sweet wine, Saccharomyces cerevisiae AXAZ-1, residual sugar concentration

Procedia PDF Downloads 362
677 Linkage between Trace Element Distribution and Growth Ring Formation in Japanese Red Coral (Paracorallium japonicum)

Authors: Luan Trong Nguyen, M. Azizur Rahman, Yusuke Tamenori, Toshihiro Yoshimura, Nozomu Iwasaki, Hiroshi Hasegawa

Abstract:

This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (µ-XRF) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in µ-XRF mapping images correspond to the dark and light bands along the annual growth rings observed in microscopic images of the coral skeleton. The µ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two trace elements. The distribution pattern of S, P and Mg reveals linkage between their distributions and the formation of dark/light bands along the annual growth rings in the axial skeleton of P. japonicum. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings.

Keywords: µ-XRF, trace element, precious coral, Paracorallium japonicum

Procedia PDF Downloads 438
676 LHCII Proteins Phosphorylation Changes Involved in the Dark-Chilling Response in Plant Species with Different Chilling Tolerance

Authors: Malgorzata Krysiak, Anna Wegrzyn, Maciej Garstka, Radoslaw Mazur

Abstract:

Under constantly fluctuating environmental conditions, the thylakoid membrane protein network evolved the ability to dynamically respond to changing biotic and abiotic factors. One of the most important protective mechanism is rearrangement of the chlorophyll-protein (CP) complexes, induced by protein phosphorylation. In a temperate climate, low temperature is one of the abiotic stresses that heavily affect plant growth and productivity. The aim of this study was to determine the role of LHCII antenna complex phosphorylation in the dark-chilling response. The study included an experimental model based on dark-chilling at 4 °C of detached chilling sensitive (CS) runner bean (Phaseolus coccineus L.) and chilling tolerant (CT) garden pea (Pisum sativum L.) leaves. This model is well described in the literature as used for the analysis of chilling impact without any additional effects caused by light. We examined changes in thylakoid membrane protein phosphorylation, interactions between phosphorylated LHCII (P-LHCII) and CP complexes, and their impact on the dynamics of photosystem II (PSII) under dark-chilling conditions. Our results showed that the dark-chilling treatment of CS bean leaves induced a substantial increase of phosphorylation of LHCII proteins, as well as changes in CP complexes composition and their interaction with P-LHCII. The PSII photochemical efficiency measurements showed that in bean, PSII is overloaded with light energy, which is not compensated by CP complexes rearrangements. On the contrary, no significant changes in PSII photochemical efficiency, phosphorylation pattern and CP complexes interactions were observed in CT pea. In conclusion, our results indicate that different responses of the LHCII phosphorylation to chilling stress take place in CT and CS plants, and that kinetics of LHCII phosphorylation and interactions of P-LHCII with photosynthetic complexes may be crucial to chilling stress response. Acknowledgments: presented work was financed by the National Science Centre, Poland grant No.: 2016/23/D/NZ3/01276

Keywords: LHCII, phosphorylation, chilling stress, pea, runner bean

Procedia PDF Downloads 134
675 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 362
674 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain

Authors: Vijay H. Ingole, Efthimia Lioliou

Abstract:

Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.

Keywords: indirubin, bacterial strain, fermentation, HPLC

Procedia PDF Downloads 14
673 Dark and Bright Envelopes for Dehazing Images

Authors: Zihan Yu, Kohei Inoue, Kiichi Urahama

Abstract:

We present a method for de-hazing images. A dark envelope image is derived with the bilateral minimum filter and a bright envelope is derived with the bilateral maximum filter. The ambient light and transmission of the scene are estimated from these two envelope images. An image without haze is reconstructed from the estimated ambient light and transmission.

Keywords: image dehazing, bilateral minimum filter, bilateral maximum filter, local contrast

Procedia PDF Downloads 258
672 Centre of the Milky Way Galaxy

Authors: Svanik Garg

Abstract:

The center of our galaxy is often referred to as the ‘galactic center’ and has many theories associated with its true nature. Given the existence of interstellar dust and bright stars, it is nearly impossible to observe its position, about 24,000 light-years away. Due to this uncertainty, humans have often speculated what could exist at a vantage point upon which the entire galaxy spirals and revolves, with wild theories ranging from the presence of dark matter to black holes and wormholes. Data up till now on the same is very limited, and conclusions are to the best of the author's knowledge, as the only method to view the galactic center is through x-ray and infrared imaging, which counter the problems mentioned earlier. This paper examines, first, the existence of a galactic center, then the methods to identify what it might contain, and lastly, possible conclusions along with implications of the findings. Several secondary sources, along with a python tool to analyze x-ray readings were used to identify the true nature of what lies in the center of the galaxy, whether it be a void due to the existence of dark energy or a black hole. Using this roughly 4-part examination, as a result of this study, a plausible definition of the galactic center was formulated, keeping in mind the rather wild theories, data and different ideas proposed by researchers. This paper aims to dissect the theory of a galactic center and identify its nature to help understand what it shows about galaxies and our universe.

Keywords: milky way, galaxy, dark energy, stars

Procedia PDF Downloads 119
671 Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing

Authors: Madhuresh Dwivedi, Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough.

Keywords: FT-NIR, dough, e-nose, proofing, principal component analysis

Procedia PDF Downloads 383
670 High Titer Cellulosic Ethanol Production Achieved by Fed-Batch Prehydrolysis Simultaneous Enzymatic Saccharification and Fermentation of Sulfite Pretreated Softwood

Authors: Chengyu Dong, Shao-Yuan Leu

Abstract:

Cellulosic ethanol production from lignocellulosic biomass can reduce our reliance on fossil fuel, mitigate climate change, and stimulate rural economic development. The relative low ethanol production (60 g/L) limits the economic viable of lignocellulose-based biorefinery. The ethanol production can be increased up to 80 g/L by removing nearly all the non-cellulosic materials, while the capital of the pretreatment process increased significantly. In this study, a fed-batch prehydrolysis simultaneously saccharification and fermentation process (PSSF) was designed to converse the sulfite pretreated softwood (~30% residual lignin) to high concentrations of ethanol (80 g/L). The liquefaction time of hydrolysis process was shortened down to 24 h by employing the fed-batch strategy. Washing out the spent liquor with water could eliminate the inhibition of the pretreatment spent liquor. However, the ethanol yield of lignocellulose was reduced as the fermentable sugars were also lost during the process. Fed-batch prehydrolyzing the while slurry (i.e. liquid plus solid fraction) pretreated softwood for 24 h followed by simultaneously saccharification and fermentation process at 28 °C can generate 80 g/L ethanol production. Fed-batch strategy is very effectively to eliminate the “solid effect” of the high gravity saccharification, so concentrating the cellulose to nearly 90% by the pretreatment process is not a necessary step to get high ethanol production. Detoxification of the pretreatment spent liquor caused the loss of sugar and reduced the ethanol yield consequently. The tolerance of yeast to inhibitors was better at 28 °C, therefore, reducing the temperature of the following fermentation process is a simple and valid method to produce high ethanol production.

Keywords: cellulosic ethanol, sulfite pretreatment, Fed batch PSSF, temperature

Procedia PDF Downloads 362
669 Production of Mycelial Biomass, Exopolysaccharide, and Enzyme during Solid-State Fermentation of Plant Raw Materials by Medicinal Mushrooms

Authors: Tamar Khardziani, Violeta Berikashvili, Amrosi Chkuaseli, Vladimir Elisashvili

Abstract:

The main objectives of this proposal are to develop low-cost, innovative, and competitive technologies for the production of mycelial biomass of medicinal mushrooms as a natural food supplement for poultry. To fulfill this task, industrial strains of Lentinus edodes, Ganoderma lucidum, and Pleurotus ostreatus were used in this study. The solid-state fermentation (SSF) of wheat grains, wheat bran, and soy flour was performed in flasks and bags. Among nine mushroom strains, P. ostreatus 2191 appeared to be the most productive in protein biomass accumulation in the SSF of wheat bran. All mushrooms produced exopolysaccharide with the highest yield of 5-8 mg/mL depending on fungal strain and growth substrate. Supplementation of medium with 1% glycerol and 2-4% peptone favored mushroom growth and protein accumulation. Among inorganic nitrogen sources, KNO₃ also provided high biomass and protein production. The SSF of all growth substrates was accompanied by the secretion of cellulase and xylanase activities. The highest CMCase activity (12-13 U/g) was revealed in the cultivation of P. ostreatus 2191 using wheat bran as a growth substrate and ammonium sulfate or yeast extract as a nitrogen source, whereas the highest xylanase activity was detected in the fermentation of soy flour supplemented with peptone. Acknowledgments: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (Grant number STEM-22-2077).

Keywords: mushrooms, plant raw materials, fermentation, biomass protein, cellulase

Procedia PDF Downloads 68
668 Phytoestrogen Content of Fermented Lupin Tempeh and Natto

Authors: Niranjani Wickramsinghe, Mario Soares, Stuart Johnson, Ranil Cooray, Vijay Jayasena

Abstract:

Tempeh is a traditional fermented soya bean food in Indonesia which is produced from de-hulled soya fermented with Rhizopusoligosporus. Natto is a traditional Japanese food made from whole soya bean seed fermentation with the bacteriaBacillus subtilis natto. Lupin is a grain legume with a low content of the phytoestrogenic isoflavones genistein and daidzein compared to soya. However due a comparable nutrition profile and increased cost effectiveness relative to soy, lupin has been substituted into various oriental fermented foods such as tempe and natto. Lupin tempeh and lupin natto were prepared using either WS or DHS. Analysis for genistein and daidzein content was conducted using HPLC for time points zero, 12h, 24h, 36h, 48h and 72h after fermentation. Results revealed that the amount of genistein and daidzein significantly increased with time in both tempeh and natto. Both isoflavones peaked at 48h in lupin tempeh and earlier at 36h in lupin natto. WS tempeh and WS natto had significantly more genistein than WHS tempe and WHS natto. Diadzeincontent of WHS tended to be higher than WS across both products. It is concluded that, fermentation time increased the amount of genistein and daidzein content in both lupin tempeh and natto and the form of lupin raw material used affected the genistein level and to some extent the daidzein content of fermented products.

Keywords: lupin, natto, soya, tempeh

Procedia PDF Downloads 376
667 Bioethanol Production from Marine Algae Ulva Lactuca and Sargassum Swartzii: Saccharification and Process Optimization

Authors: M. Jerold, V. Sivasubramanian, A. George, B.S. Ashik, S. S. Kumar

Abstract:

Bioethanol is a sustainable biofuel that can be used alternative to fossil fuels. Today, third generation (3G) biofuel is gaining more attention than first and second-generation biofuel. The more lignin content in the lignocellulosic biomass is the major drawback of second generation biofuels. Algae are the renewable feedstock used in the third generation biofuel production. Algae contain a large number of carbohydrates, therefore it can be used for the fermentation by hydrolysis process. There are two groups of Algae, such as micro and macroalgae. In the present investigation, Macroalgae was chosen as raw material for the production of bioethanol. Two marine algae viz. Ulva Lactuca and Sargassum swartzii were used for the experimental studies. The algal biomass was characterized using various analytical techniques like Elemental Analysis, Scanning Electron Microscopy Analysis and Fourier Transform Infrared Spectroscopy to understand the physio-Chemical characteristics. The batch experiment was done to study the hydrolysis and operation parameters such as pH, agitation, fermentation time, inoculum size. The saccharification was done with acid and alkali treatment. The experimental results showed that NaOH treatment was shown to enhance the bioethanol. From the hydrolysis study, it was found that 0.5 M Alkali treatment would serve as optimum concentration for the saccharification of polysaccharide sugar to monomeric sugar. The maximum yield of bioethanol was attained at a fermentation time of 9 days. The inoculum volume of 1mL was found to be lowest for the ethanol fermentation. The agitation studies show that the fermentation was higher during the process. The percentage yield of bioethanol was found to be 22.752% and 14.23 %. The elemental analysis showed that S. swartzii contains a higher carbon source. The results confirmed hydrolysis was not completed to recover the sugar from biomass. The specific gravity of ethanol was found to 0.8047 and 0.808 for Ulva Lactuca and Sargassum swartzii, respectively. The purity of bioethanol also studied and found to be 92.55 %. Therefore, marine algae can be used as a most promising renewable feedstock for the production of bioethanol.

Keywords: algae, biomass, bioethaol, biofuel, pretreatment

Procedia PDF Downloads 155
666 Hyper-Production of Lysine through Fermentation and Its Biological Evaluation on Broiler Chicks

Authors: Shagufta Gulraiz, Abu Saeed Hashmi, Muhammad Mohsin Javed

Abstract:

Lysine required for poultry feed is imported in Pakistan to fulfil the desired dietary needs. Present study was designed to produce maximum lysine by utilizing cheap sources to save the foreign exchange. To achieve the goal of lysine production through fermentation, large scale production of lysine was carried out in 7.5 L stirred glass vessel fermenter with wild and mutant Brevibacterium flavum (B. flavum) using all pre-optimized conditions. The identification of produced lysine was carried out by TLC and amino acid analyzer. Toxicity evaluation of produced lysine was performed before feeding to broiler chicks. During biological trial concentrated fermented broth having 8% lysine was used in poultry rations as a source of Lysine for test birds. Fermenter scale studies showed that the maximum lysine (20.8 g/L) was produced at 250 rpm, 1.5 vvm aeration, 6.0% inoculum under controlled pH conditions after 56 h of fermentation with wild culture but mutant (BFENU2) gave maximum yield of lysine 36.3 g/L under optimized condition after 48 h. Amino acid profiling showed 1.826% Lysine in fermented broth by wild B. flavum and 2.644% by mutant strain (BFENU2). Toxicity evaluation report showed that the produced lysine is safe for consumption by broilers. Biological evaluation results showed that produced lysine was equally good as commercial lysine in terms of weight gain, feed intake and feed conversion ratio. A cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially in Pakistan to save foreign exchange.

Keywords: lysine, fermentation, broiler chicks, biological evaluation

Procedia PDF Downloads 543
665 Poisson Type Spherically Symmetric Spacetimes

Authors: Gonzalo García-Reyes

Abstract:

Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions.

Keywords: general relativity, exact solutions, spherical symmetry, galaxy, kinematics and dynamics, dark matter

Procedia PDF Downloads 81
664 Determination of Economic and Ecological Potential of Bio Hydrogen Generated through Dark Photosynthesis Process

Authors: Johannes Full, Martin Reisinger, Alexander Sauer, Robert Miehe

Abstract:

The use of biogenic residues for the biotechnological production of chemical energy carriers for electricity and heat generation as well as for mobile applications is an important lever for the shift away from fossil fuels towards a carbon dioxide neutral post-fossil future. A multitude of promising biotechnological processes needs, therefore, to be compared against each other. For this purpose, a multi-objective target system and a corresponding methodology for the evaluation of the underlying key figures are presented in this paper, which can serve as a basis for decisionmaking for companies and promotional policy measures. The methodology considers in this paper the economic and ecological potential of bio-hydrogen production using the example of hydrogen production from fruit and milk production waste with the purple bacterium R. rubrum (so-called dark photosynthesis process) for the first time. The substrate used in this cost-effective and scalable process is fructose from waste material and waste deposits. Based on an estimation of the biomass potential of such fructose residues, the new methodology is used to compare different scenarios for the production and usage of bio-hydrogen through the considered process. In conclusion, this paper presents, at the example of the promising dark photosynthesis process, a methodology to evaluate the ecological and economic potential of biotechnological production of bio-hydrogen from residues and waste.

Keywords: biofuel, hydrogen, R. rubrum, bioenergy

Procedia PDF Downloads 192
663 Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that Galactomyces sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of Galactomyces sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that G. reessii has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters.

Keywords: decolorization, palm oil mill effluent, termite, yeast

Procedia PDF Downloads 202
662 Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana

Authors: Nidhi Nalin

Abstract:

This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable.

Keywords: fermentation, thermotoga, hydrogen, vinegar, biofuel

Procedia PDF Downloads 151
661 Optimization of Digestive Conditions of Opuntia ficus-indica var. Saboten using Food-Grade Enzymes

Authors: Byung Wook Yang, Sae Kyul Kim, Seung Il Ahn, Jae Hee Choi, Heejung Jung, Yejin Choi, Byung Yong Kim, Young Tae Hahm

Abstract:

Opuntia ficus-indica is a member of the Cactaceae family that is widely grown in all the semiarid countries throughout the world. Opuntia ficus-indica var. Saboten (OFS), commonly known as prickly pear cactus, is commercially cultivated as a dietary foodstuffs and medicinal stuffs in Jeju Island, Korea. Owing to high viscosity of OFS’ pad, its application to the commercial field has been limited. When the low viscosity of OFS’s pad is obtained, it is useful for the manufacture of healthy food in the related field. This study was performed to obtain the optimal digestion conditions of food-grade enzymes (Pectinex, Viscozyme and Celluclast) with the powder of OFS stem. And also, the contents of water-soluble dietary fiber (WSDF) of the dried powder prepared by the extraction of OFS stem were monitored and optimized using the response surface methodology (RSM), which included 20 experimental points with 3 replicates for two independent variables (fermentation temperature and time). A central composite design was used to monitor the effect of fermentation temperature (30-90 °C, X1) and fermentation time (1-10h, X2) on dependent variables, such as viscosity (Y1), water-soluble dietary fiber (Y2) and dietary fiber yield (Y3). Estimated maximum values at predicted optimum conditions were in agreement with experimental values. Optimum temperature and duration were 50°C and 12 hours, respectively. Viscosity value reached 3.4 poise. Yield of water-soluble dietary fiber is determined in progress.

Keywords: Opuntia ficus-indica var. saboten, enzymatic fermentation, response surface methodology, water-soluble dietary fiber, viscosity

Procedia PDF Downloads 341
660 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 117
659 Exploring the Dark Side of IT Security: Delphi Study on Business’ Influencing Factors

Authors: Tizian Matschak, Ilja Nastjuk, Stephan Kühnel, Simon Trang

Abstract:

We argue that besides well-known primary effects of information security controls (ISCs), namely confidentiality, integrity, and availability, ISCs can also have secondary effects. For example, while IT can add business value through impacts on business processes, ISCs can be a barrier and distort the relationship between IT and organizational value through the impact on business processes. By applying the Delphi method with 28 experts, we derived 27 business process influence dimensions of ISCs. Defining and understanding these mechanisms can change the common understanding of the cost-benefit valuation of IT security investments and support managers' effective and efficient decision-making.

Keywords: business process dimensions, dark side of information security, Delphi study, IT security controls

Procedia PDF Downloads 107
658 Establishing the Microbial Diversity of Traditionally Prepared Rice Beer of Northeast India to Impact in Increasing Its Shelf Life

Authors: Shreya Borthakur, Adhar Sharma

Abstract:

The North-east states of India are well known for their age-old practice of preparing alcoholic beer from rice and millet. They do so in a traditional way by sprinkling starter cake (inoculum) on cooked rice or millet after which the fermentation starts and eventually, forms the beer. This starter cake has a rich composition of different microbes and medicinal herbs along with the powdered rice dough or maize dough with rice bran. The starter cake microbial composition has an important role in determining the microbial succession and metabolic secretions as the fermentation proceeds from the early to its late stage, thus, giving the beer a unique aroma, taste, and other sensory properties of traditionally prepared beer. Here, We have worked on identifying and characterizing the microbial community in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. A total of 18 microbial strains have been isolated from the starter cake of Monpa tribe, while 10 microbial isolates in that of Galo tribe. A metagenomic approach was applied to enumerate the cultural and non-cultural microbes present in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. The findings of the mini-project lays foundation to understand the role of microbes present in the starter cake in the beer’s fermentation process and will aide in future research on re-formulating the starter cakes to prevent the early spoilage of the ready to consume beer as the traditional rice beer has a short shelf-life. The paper concludes with the way forward being controlled CRISPR-Cas9.

Keywords: fermentation, traditional beer, microbial succession, preservation, CRISPR-Cas, food microbiology

Procedia PDF Downloads 113