Search results for: cholesteric liquid crystal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2468

Search results for: cholesteric liquid crystal

2348 Heat Transfer Investigation in a Dimple Plate Heat Exchanger Using Ionic Liquid and Ionanofluid

Authors: Divya P. Soman, S. Karthika, P. Kalaichelvi, T. K. Radhakrishnan

Abstract:

Heat transfer characteristics of ionic liquid solution as cold fluid in plate heat exchanger with dimple plate geometry was studied. The ionic liquid solution used in this study was 1-butyl-3-methylimidazolium bromide in water. The present experimental study is to understand the heat transfer behavior of different 1-butyl-3-methylimidazolium bromide concentrations (0.1 and 0.2% w/w) in water. In addition, the heat transfer activity of ionanofluid as cold fluid was investigated. The ionanofluid was prepared by dispersing 0.3% w/w Al2O3 in the ionic liquid solution as base fluid. Experiments were also conducted to determine thermophysical properties of ionanofluid. The empirical correlations as a function of temperature were developed to predict the thermophysical properties. Finally, the heat transfer performance of ionic liquid solution, ionanofluid, nanofluid and water were compared. The impact of hot fluid’s (water) Reynolds number on overall heat transfer coefficient and Nusselt number of cold fluids were analyzed. The nanofluid and ionanofluid were found to possess better heat transfer behavior than water and ionic liquid solution. Heat transfer augmentation was observed for ionanofluid when compared with the base fluid (0.1% w/w ionic liquid solution).

Keywords: ionic liquid, nanofluid, ionanofluid, dimple plate heat exchanger, Nusselt number, overall heat transfer coefficient

Procedia PDF Downloads 106
2347 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents

Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub

Abstract:

In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.

Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model

Procedia PDF Downloads 186
2346 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes

Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang

Abstract:

The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.

Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations

Procedia PDF Downloads 213
2345 Invisible Aircraft Using Plasma Display

Authors: C. Ramamoorthy, R. Ranga Raj

Abstract:

In olden days the Ramayana epic depicts the usage of invisible and fuel less aircraft named pushpavimana. The change of color in the reptile family chameleon paves way for the concept of color change phenomenon available in nature. In present scenario the aircrafts are visible so it is easily identified. So there are too many problems from the threatening. Research is still going on about this problem by using Liquid Crystal Display (LCD). Objective of this paper is to find much better to use the concept of invisible aircraft using plasma display through Couple Charged Device camera (CCD), which has a high resolution and can be used for many purposes like spying, defense, etc. Moreover it is cost wise cheap then, escaping the foe viewing.

Keywords: CCD camera, chameleon, invisible, plasma display

Procedia PDF Downloads 374
2344 Multiphase Coexistence for Aqueous System with Hydrophilic Agent

Authors: G. B. Hong

Abstract:

Liquid-Liquid Equilibrium (LLE) data are measured for the ternary mixtures of water + 1-butanol + butyl acetate and quaternary mixtures of water + 1-butanol + butyl acetate + glycerol at atmospheric pressure at 313.15 K. In addition, isothermal Vapor–Liquid–Liquid Equilibrium (VLLE) data are determined experimentally at 333.15 K. The region of heterogeneity is found to increase as the hydrophilic agent (glycerol) is introduced into the aqueous mixtures. The experimental data are correlated with the NRTL model. The predicted results from the solution model with the model parameters determined from the constituent binaries are also compared with the experimental values.

Keywords: LLE, VLLE, hydrophilic agent, NRTL

Procedia PDF Downloads 214
2343 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 122
2342 Determination of Benzatropine in Hair by GC/MS after Liquid-Liquid Extraction (LLE)

Authors: Abdulsallam A. Bakdash, Aiyshah M. Alshehri, Hind M. Alenzi

Abstract:

Benzatropine (benztropine) is used to treat symptoms of Parkinson's disease or involuntary movements due to the side effects of certain psychiatric drugs. We report in this study, results of a procedure for the determination of benzatropine in hair using LLE, once with methanol and second with phosphate buffer (pH 6.0), followed by filtration and then re-extraction with dichloromethane. A GC/MS method was developed and validated for this determination using selected ion monitoring (SIM) detection without derivatization. Linearity established over the concentration range 0.1-20.0 ng/mg hair, and the correlation coefficients were greater than 0.99. Recoveries were 52.2% and 21.1% using methanol and phosphate buffer extraction, respectively. Detection limits of benzatropine in hair were between 0.65 and 3.0 ng/mg hair, while the accuracy were 10.4% and 18.5% (RSD), respectively. We also applied this method to the analysis of soaked hair samples and demonstrated that the LLE using methanol meets the requirement for the analysis of benzatropine in hair.

Keywords: hair analysis, benzatropine, liquid-liquid extraction, GC/MS

Procedia PDF Downloads 379
2341 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites

Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng

Abstract:

Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.

Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity

Procedia PDF Downloads 54
2340 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate

Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev

Abstract:

Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).

Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior

Procedia PDF Downloads 137
2339 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid

Procedia PDF Downloads 277
2338 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner

Authors: Sewon Kim, Changyeop Lee

Abstract:

A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.

Keywords: burner, low NOx, liquid fuel, partial oxidation

Procedia PDF Downloads 298
2337 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes

Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat

Abstract:

In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.

Keywords: photonic crystal, microcavity, filling ratio, elliptical holes

Procedia PDF Downloads 107
2336 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 194
2335 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel

Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende

Abstract:

Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction

Procedia PDF Downloads 583
2334 Multi-Walled Carbon Nanotubes as Nucleating Agents

Authors: Rabindranath Jana, Plabani Basu, Keka Rana

Abstract:

Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.

Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation

Procedia PDF Downloads 460
2333 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method

Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer

Abstract:

This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.

Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper

Procedia PDF Downloads 318
2332 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 388
2331 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation

Authors: N. Lebga, Kh. Bouamama, K. Kassali

Abstract:

We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.

Keywords: density functional theory, elastic properties, ZnS, ZnSe,

Procedia PDF Downloads 545
2330 Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions

Authors: P. Deepak Kumar, Aishwarya Alok, P. R. Maiti

Abstract:

Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable.

Keywords: liquid filled containers, circular tanks, IS 1893 (part 2), seismic analysis, sloshing

Procedia PDF Downloads 317
2329 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer

Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu

Abstract:

The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.

Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium

Procedia PDF Downloads 51
2328 A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer

Authors: James Q. Feng

Abstract:

Pneumatic nebulizers (as variations based on the Collison nebulizer) have been widely used for producing fine aerosol droplets from a liquid material. As qualitatively described by many authors, the basic working principle of those nebulizers involves utilization of the negative pressure associated with an expanding gas jet to syphon liquid into the jet stream, then to blow and shear into liquid sheets, filaments, and eventually droplets. But detailed quantitative analysis based on fluid mechanics theory has been lacking in the literature. The purpose of present work is to investigate the nature of negative pressure distribution associated with compressible gas jet flow in the Collison nebulizer by a computational fluid dynamics (CFD) analysis, using an OpenFOAM® compressible flow solver. The value of the negative pressure associated with a gas jet flow is examined by varying geometric parameters of the jet expansion channel adjacent to the jet orifice outlet. Such an analysis can provide valuable insights into fundamental mechanisms in liquid aspiration process, helpful for effective design of the pneumatic atomizer in the Aerosol Jet® direct-write system for micro-feature, high-aspect-ratio material deposition in additive manufacturing.

Keywords: collison nebulizer, compressible gas jet flow, liquid aspiration, pneumatic atomization

Procedia PDF Downloads 139
2327 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke

Authors: Yadong Liu

Abstract:

The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.

Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag

Procedia PDF Downloads 116
2326 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.

Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide

Procedia PDF Downloads 471
2325 Synthesis Modified Electrodes with Au/Pt Nanoparticles and Two New Coordination Polymers of Ag(I) and Cu(II) Constructed by Pyrazine and 3-Nitrophthalic Acid as a Novel Electrochemical Sensing Platform

Authors: Zohreh Derikvand, Hadis Cheraghi, Azadeh Azadbakht, Vaclav Eigner, Michal Dusek

Abstract:

Two new one and two dimensional metal organic coordination polymers of Cu(II), [Cu(3-nph)2(H2O)2pz]n (1) and Ag(I), {[Ag(3-nph)pz].H2O}n (2) with pyrazine (pz) and 3- nitrophthalic acid (3-nph) have been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. We used these compounds to preparation modified electrode with Au/Pt nanosparticles in order to investigation electrochemistry and electrocatalysis activities. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). The Ag(I) coordination polymer shows a 2D layer structure constructed from dinuclear silver (I) building blocks in which two crystallographically Ag+ ions are connected to each other by a covalent bond. The pyrazine ligands adopt μ2 bridging modes, linking the metal centers into a one and two -dimensional coordination framework in 1 and 2. The two AgI cations are surrounded by pyrazine and 3-nitrophthalate mono anions and indicate distorted tetrahedral geometry. In the crystal structures of Ag(I) complex there are non-classical hydrogen bonding arrangements, C–O•••π and π–π stacking interactions. In Cu(II) coordination polymer, the coordination geometry around Cu(II) atom is a distorted octahedron. Interestingly, the structural analysis illustrates that the strong and weak hydrogen bond accompanied with C–H•••π and C–O•••π stacking interactions assemble the crystal structure of 1 and 2 into fascinating 3D supramolecular architecture.

Keywords: 3-nithrophethalic acid, crystal structure, coordination polymer, electrocatalysis

Procedia PDF Downloads 293
2324 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times

Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati

Abstract:

The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.

Keywords: Bali beef, chicken meat, liquid smoke, meat quality

Procedia PDF Downloads 363
2323 Efficient Liquid Desiccant Regeneration for Fresh Air Dehumidification Application

Authors: M. V. Rane, Tareke Tekia

Abstract:

Fresh Air Dehumidifier having a capacity of 1 TR has been developed by Heat Pump Laboratory at IITB. This fresh air dehumidifier is based on potassium formate liquid desiccant. The regeneration of the liquid desiccant can be done in two stages. The first stage of liquid desiccant regeneration involves the boiling of liquid desiccant inside the evacuated glass type solar thermal collectors. Further regeneration of liquid desiccant can be achieved using Low Temperature Regenerator, LTR. The coefficient of performance of the fresh air dehumidifier greatly depends on the performance of the major components such as high temperature regenerator, low temperature regenerator, fresh air dehumidifier, and solution heat exchangers. High effectiveness solution heat exchanger has been developed and tested. The solution heat exchanger is based on a patented aluminium extrusion with special passage geometry to enhance the heat transfer rate. Effectiveness up to 90% was achieved. Before final testing of the dehumidifier, major components have been tested individually. Testing of the solar thermal collector as hot water and steam generator reveals that efficiency up to 55% can be achieved. In this paper, the development of 1 TR fresh air dehumidifier with special focus on solution heat exchangers and solar thermal collector performance is presented.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration, coefficient of performance

Procedia PDF Downloads 164
2322 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 377
2321 Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography

Authors: Jonida Canaj

Abstract:

A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples.

Keywords: high performance liquid chromatography, HPLC, method validation, polycyclic aromatic hydrocarbons, PAHs, water

Procedia PDF Downloads 75
2320 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: nonlinear oscillations, two-layered liquid, instability region, hydrodynamic coefficients, resonance frequency

Procedia PDF Downloads 189
2319 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang

Authors: Siti Aminatu Zuhria

Abstract:

On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.

Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste

Procedia PDF Downloads 264