Search results for: carcinogenic%20risk
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 163

Search results for: carcinogenic%20risk

73 Optimisation of Dyes Decolourisation by Bacillus aryabhattai

Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.

Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design

Procedia PDF Downloads 197
72 The Effect of Inulin on Aflatoxin M1 Binding Ability of Probiotic Bacteria in Yoghurt

Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Banu Sancak, Mevlude Kizil

Abstract:

Aflatoxin M1 (AFM1) represents mutagenic, carcinogenic, hepatotoxic and immunosuppressive properties, and shows adverse effect on human health. Recently the use of probiotics are focused on AFM1 detoxification because of the fact that probiotic strains have a binding ability to AFM1. Moreover, inulin is a prebiotic to improve the ability of probiotic bacteria. Therefore, the aim of the study is to investigate the effect of inulin on AFM1 binding ability of some probiotic bacteria. Yoghurt samples were manufactured by using skim milk powder artificially contaminated with AFM1 at concentration 100 pg/ml. Different samples were prepared for the study as: first sample consists of yoghurt starter bacteria (L. bulgaricus and S. thermophilus), the second sample consists of starter and L. plantarum, starter and B. bifidum ATCC were added to the third sample, starter and B. animalis ATCC 27672 were added to the forth sample, and the fifth sample is a binary culture consisted of starter and B. bifidum and B. animalis. Moreover, the same work groups were prepared with inulin (4%). The samples were incubated at 42°C for 4 hours, then stored for three different time interval (1,5 and 10 days). The toxin was measured by the ELISA. When inulin was added to work groups, there was significant change on AFM1 binding ability at least one sample in all groups except the one with L. plantarum (p<0.05). The highest levels of AFM1 binding ability (68.7%) in samples with inulin were found in the group which B. bifidum was added, whereas the lowest levels of AFM1 binding ability (44.4%) in samples with inulin was found in the fifth sample. The most impressive effect of inulin was found on B.bifidum. In this study, it was obtained that there was a significant effect of storage on AFM1 binding ability in the all groups with inulin except the one with L. plantarum (p<0.05). Consequently, results show that AFM1 detoxification by probiotics have a potential application to reduce toxin concentrations in yoghurt. Besides, inulin has different effects on AFM1 binding ability of each probiotic bacteria strain.

Keywords: aflatoxin M1, inulin, probiotics, storage

Procedia PDF Downloads 285
71 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 242
70 The Role Previous Cytomegalovirus Infection in Subsequent Lymphoma Develompment

Authors: Amalia Ardeljan, Lexi Frankel, Divesh Manjani, Gabriela Santizo, Maximillian Guerra, Omar Rashid

Abstract:

Introduction: Cytomegalovirus (CMV) infection is a widespread infection affecting between 60-70% of people in industrialized countries. CMV has been previously correlated with a higher incidence of Hodgkin Lymphoma compared to noninfected persons. Research regarding prior CMV infection and subsequent lymphoma development is still controversial. With limited evidence, further research is needed in order to understand the relationship between previous CMV infection and subsequent lymphoma development. This study assessed the effect of CMV infection and the incidence of lymphoma afterward. Methods: A retrospective cohort study (2010-2019) was conducted through a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using International Classification of Disease (ICD) 9th,10th codes, and Current Procedural Terminology (CPT) codes. These were used to identify lymphoma diagnosis in a previously CMV infected population. Patients were matched for age range and Charlson Comorbidity Index (CCI). A chi-squared test was used to assess statistical significance. Results: A total number of 14,303 patients was obtained in the CMV infected group as well as in the control population (matched by age range and CCI score). Subsequent lymphoma development was seen at a rate of 11.44% (1,637) in the CMV group and 5.74% (822) in the control group, respectively. The difference was statistically significant by p= 2.2x10-16, odds ratio = 2.696 (95% CI 2.483- 2.927). In an attempt to stratify the population by antiviral medication exposure, the outcomes were limited by the decreased number of members exposed to antiviral medication in the control population. Conclusion: This study shows a statistically significant correlation between prior CMV infection and an increased incidence of lymphoma afterward. Further exploration is needed to identify the potential carcinogenic mechanism of CMV and whether the results are attributed to a confounding bias.

Keywords: cytomegalovirus, lymphoma, cancer, microbiology

Procedia PDF Downloads 201
69 The Effect of Substitution Concentrate with Leguminose Indigofera Zollingeriana in Lactation Goat Ration of Dry Matter, Organic Matter Intake, Milk Production, PUFA and CLA Content of Milk

Authors: Mardiati Zain, Elihasridas, Yolani Utami, Bima Bagaskara, Muhammad Taufic

Abstract:

The purpose of this study is to formulated a ration that can increased concentration of bioactive compounds in the form of conjugated linoleic acid (CLA) and polyunsaturated fatty acids acid (PUFA) in milk to produce functional milk that is beneficial for health. It has been proven that forage-based feeds (grass and legumes) are able to increased the presence of polyunsaturated fatty acids and in particular conjugated linoleic acid CLA in milk. Presence of bioactive compounds in product fat of ruminant origin these have generated great interest because they are associated with their potential as anti carcinogenic, anti diabetogenic and stimulant of the immune response. PUFA and CLA and especially n-3 fatty acids, only 4% of the fatty acids present in milk. For that, efforts need to be made to change the fatty acid composition of milk to increase the nutritional value for consumers through increasing the concentration of PUFA and CLA This is very important in the midst of the covid pandemic 19 which is increasing, it is necessary to drink and food that can improve the system body immunity. . The study was conducted in vivo using a randomized block design with 4 treatments and 4 replications. This experiment used 16 heads of 40-55 kg lactating goats. Goat were fed a basal diet containing (dry matter basis) 60% native grass and 40% concentrate. The treatment was A. 60% native grass + 40% concentrate, B. 60% native grass + 30% concentrate + 10% I. zollengeriana C. 60% native grass + 20% concentrate + 20% I. zollengeriana, D, 60% native grass + 10% concentrate + 30% I. zollengeriana.The results showed that the using of I. zollengeriana until 30% in ration gave the same result with using concentrate of nutrien intake, and milk production but increased the CLA dan PUFA content in milk. The results of this study concluded that I. zollengeriana can increased the content of CLA and PUFA at the use of 75% substitute concentrate in the diet of lactating goats.

Keywords: Indigofera zollengeriana, lactation goat, milk production, CLA, PUFA

Procedia PDF Downloads 211
68 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 144
67 Exhaust Gas Cleaning Systems on Board Ships and Impact on Crews’ Health: A Feasibility Study Protocol

Authors: Despoina Andrioti Bygvraa, Ida-Maja Hassellöv, George Charalambous

Abstract:

Exhaust gas cleaning systems, also known as scrubbers, are today widely used to allow for the use of High Sulphur Heavy Fuel Oil and still comply with the regulations limiting sulphur content in marine fuels. There are extensive concerns about environmental consequences, especially in the Baltic Sea, from the wide-scale use of scrubbers, as the wash water is acidic (ca pH 3) and contains high concentrations of toxic, carcinogenic, and mutagenic substances. The aim of this feasibility study is to investigate the potential adverse effects on seafarers’ health with the ultimate goal of raising awareness of chemical-related health and safety issues in the shipping environment. The project got funding from the Swedish Foundation. The team will extend previously compiled data on scrubber wash water concentrations of hazardous substances and pH to include the use of strong base in closed-loop scrubbers, and scoping assessment on handling and disposing practices. Based on the findings (a), a systematic review of risk assessment will follow to show the risk of exposures, the establishment of the hazardous levels for human health as well as the respective prevention practices. In addition, the researchers will perform (b) a systematic review to identify facilitators and barriers of the crew on compliance with the safe handling of chemicals. The study will run for 12 months, delivering (a) a risk assessment inventory with risk exposures and (b) a course description of safe handling practices. This feasibility study could provide valuable knowledge on how pollutants found in scrubbers should be considered from a human health perspective to facilitate evidence-based informed decisions in future technology- and policy development to make shipping a safer, healthier, and more attractive workplace.

Keywords: health and safety, seafarers, scrubbers, chemicals, risk exposures

Procedia PDF Downloads 13
66 Neuroprotective Effect of Tangeretin against Potassium Dichromate-Induced Acute Brain Injury via Modulating AKT/Nrf2 Signaling Pathway in Rats

Authors: Ahmed A. Sedik, Doaa Mahmoud Shuaib

Abstract:

Brain injury is a cause of disability and death worldwide. Potassium dichromate (PD) is an environmental contaminant widely recognized as teratogenic, carcinogenic, and mutagenic towards animals and humans. The aim of the present study was to investigate the possible neuroprotective effects of tangeretin (TNG) on PD-induced brain injury in rats. Forty male adult Wistar rats were randomly and blindly allocated into four groups (8 rats /group). The first group received saline intranasally (i.n.). The second group received a single dose of PD (2 mg/kg, i.n.). The third group received TNG (50 mg/kg; orally) for 14 days, followed by i.n. of PD on the last day of the experiment. Four groups received TNG (100 mg/kg; orally) for 14 days, followed by i.n. of PD on the last day of the experiment. 18- hours after the final treatment, behavioral parameters, neuro-biochemical indices, FTIR analysis, and histopathological studies were evaluated. Results of the present study revealed that rats intoxicated with PD promoted oxidative stress and inflammation via an increase in MDA and a decrease in Nrf2 signaling pathway and GSH levels with an increase in brain contents of TNF-α, IL-10, and NF-kβ and reduced AKT levels in brain homogenates. Treatment with TNG (100 mg/kg; orally) ameliorated behavioral, cholinergic activities and oxidative stress, decreased the elevated levels of pro-inflammatory mediators; TNF-α, IL-10, and NF-κβ elevated AKT pathway with corrected FTIR spectra with a decrease in brain content of chromium residues detected by atomic absorption spectrometry. Also, TNG administration restored the morphological changes as degenerated neurons and necrosis associated with PD intoxication. Additionally, TNG decreased Caspase-3 expression in the brain of PD rats. TNG plays a crucial role in AKT/Nrf2 pathway that is responsible for their antioxidant, anti-inflammatory effects, and apoptotic pathway against PD-induced brain injury in rats.

Keywords: tangeretin, potassium dichromate, brain injury, AKT/Nrf2 signaling pathway, FTIR, atomic absorption spectrometry

Procedia PDF Downloads 63
65 Chemopreventive and Therapeutic Efficacy of Salsola inermis Extract against N-Nitrosodiethylamine-Initiated and Phenobarbital-Promoted Hepatocellular Carcinogenesis in Wistar Rats

Authors: Ahlam H. Mahmoud, Samir F. Zohny, Ibrahim H. Boraia, Faten S. Bayoumic, Eman Eissa

Abstract:

Hepatocellular carcinoma is one of the most common cancers worldwide and is known to be resistant to conventional chemotherapy. Therefore, we aimed to assess the Salsola inermis extract as a novel chemopreventive and/or therapeutic agent against N-nitrosodiethylamine (DNE)/phenobarbital (PB)-induced hepatocarcinogenesis in rats. Adult male Wistar albino rats were divided into five groups: group1 rats were served as normal controls; group 2 rats were injected intraperitoneally with S. inermis extract (100 mg/kg body weight/day) for 20 weeks; group 3 rats were subjected to two-phase hepatocarcinogenic regimen (initiation of hepatocarcinogenesis was performed by a single intraperitoneal injection of DEN at a dose of 200 mg/kg body weight, 2 weeks later, the carcinogenic effect was promoted by supplementation of rats with 0.05% PB for 16 weeks); group 4 rats were injected intraperitoneally with S. inermis extract 2 weeks prior to the injection of DEN, the daily injection of S. inermis extract was then continued for 18 weeks along with two-phase hepatocarcinogenic regimen (chemoprevention group); and group 5 rats were subjected to the two-phase hepatocarcinogenic regimen, and then, the animals were injected intraperitoneally with S. inermis extract for 4 weeks (treatment group). The activities of serum liver enzymes and levels of total bilirubin, conjugated bilirubin, α-fetoprotein, vascular endothelial growth factor (VEGF) and soluble intercellular adhesion molecule-1 (sICAM-1) in serum were decreased in chemopreventive and treated rats compared with DEN/PB-administered rats. Interestingly, the serum levels of total protein and albumin were normalized in chemopreventive and treated rats. Moreover, the majority of chemopreventive and treated rats showed an almost normal histological pattern of liver. In conclusion, S. inermis extract possessed chemopreventive and therapeutic activities against hepatocarcinogenesis in rats partially through the inhibition of VEGF and sICAM-1.

Keywords: Salsola inermis extract, hepatocarcinogenesis, α–fetoprotein, VEGF, sICAM-1

Procedia PDF Downloads 341
64 Heavy Metals and Carcinogenic Risk Assessment in Free-Ranged Livestock of Lead-Contaminated Goldmine Communities of Zamfara State, Northern Nigeria

Authors: Sulaiman Rabiu, Muazu Gusau Abubakar, Jafar Usman Zakari

Abstract:

The consumption of meat is of great importance as it provides a good source of proteins and significant amount of essential trace element to the body. However, contamination of meat and meat products with heavy metals is becoming a serious threat to food safety and public health. Therefore, the present study is aimed to evaluate the concentration of some heavy metals in muscles and entrails of free-ranged cattle, sheep and goats. A total of sixty (60) fresh samples of muscles, liver, kidney, small intestines and stomach of free ranged cattle, sheep and goats were collected from abattoirs of different goldmine communities of Anka, Bukkuyum, Maru andTalata-Mafara Local Government Areas of Zamfara State, Nigeria. The samples were digested using 10 mL of a mixed 70% high grade concentration of HNO₃ and 65% HCl (4:1 v/v); the mixture was heated until dense fumes disappeared forming a clear transparent solution and diluted to 50 mL with deionized water. Actual concentrations of Cd, Cr, Cu, Co, As, Ni, Mn, Pb and Zn were determined using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES). From the results obtained, goat liver had the highest mean concentration of lead, arsenic, cobalt and manganese (12.43± 0.31, 14.25±0.32, 3.47± 0.86 and 12.68± 0.92 mg/kg respectively) while goat kidney had the highest concentration of copper and zinc (10.08±0.61 and 24.16±1.30 mg/kg respectively). The highest concentrations of cadmium and nickel were recorded in sheep kidney (7.75± 0.65 and 2.08±0.10 mg/kg respectively). Cattle muscles had the highest chromium concentration than all the organs analysed. The target hazard quotients (THQs) for all the metals were below 1.0, but TR which is a risk indices for carcinogenicity indicates an alarming result that requires stringent control to protect public health.Therefore, intensive public health awareness on the risk associated with contamination of heavy metals in meat should be advocated.

Keywords: contamination, goldmine, heavy metals, meat

Procedia PDF Downloads 48
63 Reverse Osmosis Application on Sewage Tertiary Treatment

Authors: Elisa K. Schoenell, Cristiano De Oliveira, Luiz R. H. Dos Santos, Alexandre Giacobbo, Andréa M. Bernardes, Marco A. S. Rodrigues

Abstract:

Water is an indispensable natural resource, which must be preserved to human activities as well the ecosystems. However, the sewage discharge has been contaminating water resources. Conventional treatment, such as physicochemical treatment followed by biological processes, has not been efficient to the complete degradation of persistent organic compounds, such as medicines and hormones. Therefore, the use of advanced technologies to sewage treatment has become urgent and necessary. The aim of this study was to apply Reverse Osmosis (RO) on sewage tertiary treatment from a Waste Water Treatment Plant (WWTP) in south Brazil. It was collected 200 L of sewage pre-treated by wetland with aquatic macrophytes. The sewage was treated in a RO pilot plant, using a polyamide membrane BW30-4040 model (DOW FILMTEC), with 7.2 m² membrane area. In order to avoid damage to the equipment, this system contains a pleated polyester filter with 5 µm pore size. It was applied 8 bar until achieve 5 times of concentration, obtaining 80% of recovery of permeate, with 10 L.min-1 of concentrate flow rate. Samples of sewage pre-treated on WWTP, permeate and concentrate generated on RO was analyzed for physicochemical parameters and by gas chromatography (GC) to qualitative analysis of organic compounds. The results proved that the sewage treated on WWTP does not comply with the limit of phosphorus and nitrogen of Brazilian legislation. Besides this, it was found many organic compounds in this sewage, such as benzene, which is carcinogenic. Analyzing permeate results, it was verified that the RO as sewage tertiary treatment was efficient to remove of physicochemical parameters, achieving 100% of iron, copper, zinc and phosphorus removal, 98% of color removal, 91% of BOD and 62% of ammoniacal nitrogen. RO was capable of removing organic compounds, however, it was verified the presence of some organic compounds on de RO permeate, showing that RO did not have the capacity of removal all organic compounds of sewage. It has to be considered that permeate showed lower intensity of peaks in chromatogram in comparison to the sewage of WWTP. It is important to note that the concentrate generate on RO needs a treatment before its disposal in environment.

Keywords: organic compounds, reverse osmosis, sewage treatment, tertiary treatment

Procedia PDF Downloads 175
62 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating

Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain

Abstract:

Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.

Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating

Procedia PDF Downloads 325
61 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: additive manufacturing, lean production, reproducibility, work safety

Procedia PDF Downloads 156
60 Investigating Anti-Tumourigenic and Anti-Angiogenic Effects of Resveratrol in Breast Carcinogenesis Using in-Silico Algorithms

Authors: Asma Zaib, Saeed Khan, Ayaz Ahmed Noonari, Sehrish Bint-e-Mohsin

Abstract:

Breast cancer is the most common cancer among females worldwide and is estimated that more than 450,000 deaths are reported each year. It accounts for about 14% of all female cancer deaths. Angiogenesis plays an essential role in Breast cancer development, invasion, and metastasis. Breast cancer predominantly begins in luminal epithelial cells lining the normal breast ducts. Breast carcinoma likely requires coordinated efforts of both increased proliferation and increased motility to progress to metastatic stages.Resveratrol: a natural stilbenoid, has anti-inflammatory and anticancer effects that inhibits proliferation of variety of human cancer cell lines, including breast, prostate, stomach, colon, pancreatic, and thyroid cancers.The objective of this study is:To investigate anti-neoangiogenesis effects of Resveratrol in breast cancer and to analyze inhibitory effects of resveratrol on aromatase, Erα, HER2/neu, and VEGFR.Docking is the computational determination of binding affinity between molecule (protein structure and ligand).We performed molecular docking using Swiss-Dock and to determine docking effects of (1) Resveratrol with Aromatase, (2) Resveratrol with ERα (3) Resveratrol with HER2/neu and (4) Resveratrol with VEGFR2.Docking results of resveratrol determined inhibitory effects on aromatase with binding energy of -7.28 kcal/mol which shows anticancerous effects on estrogen dependent breast tumors. Resveratrol also show inhibitory effects on ERα and HER2/new with binging energy -8.02, and -6.74 respectively; which revealed anti-cytoproliferative effects upon breast cancer. On the other hand resveratrol v/s VEGFR showed potential inhibitory effects on neo-angiogenesis with binding energy -7.68 kcal/mol, angiogenesis is the important phenomenon that promote tumor development and metastasis. Resveratrol is an anti-breast cancer agent conformed by in silico studies, it has been identified that resveratrol can inhibit breast cancer cells proliferation by acting as competitive inhibitor of aromatase, ERα and HER2 neo, while neo-angiogemesis is restricted by binding to VEGFR which authenticates the anti-carcinogenic effects of resveratrol against breast cancer.

Keywords: angiogenesis, anti-cytoproliferative, molecular docking, resveratrol

Procedia PDF Downloads 294
59 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 126
58 Remediation of Dye Contaminated Wastewater Using N, Pd Co-Doped TiO₂ Photocatalyst Derived from Polyamidoamine Dendrimer G1 as Template

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N, Pt) co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. The resultant photocatalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), UV‐Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), thermal gravimetric analysis (TGA). The results showed that the calcination atmosphere played an important role in the morphology, crystal structure, spectral absorption, oxygen vacancy concentration, and visible light photocatalytic performance of the catalysts. Anatase phase particles ranging between 9- 20 nm were also confirmed by TEM, SEM, and analysis. The origin of the visible light photocatalytic activity was attributed to both the elemental N and Pd dopants and the existence of oxygen vacancies. Co-doping imparted a shift in the visible region of the solar spectrum. The visible light photocatalytic activity of the samples was investigated by monitoring the photocatalytic degradation of brilliant black dye. Co-doped TiO₂ showed greater photocatalytic brilliant black degradation efficiency compared to singly doped N-TiO₂ or Pd-TiO₂ under visible light irradiation. The highest reaction rate constant of 3.132 x 10-2 min⁻¹ was observed for N, Pd co-doped TiO₂ (2% Pd). The results demonstrated that the N, Pd co-doped TiO₂ (2% Pd) sample could completely degrade the dye in 3 h, while the commercial TiO₂ showed the lowest dye degradation efficiency (52.66%).

Keywords: brilliant black, Co-doped TiO₂, polyamidoamine generation 1 (PAMAM G1), photodegradation

Procedia PDF Downloads 149
57 TiO2 Solar Light Photocatalysis a Promising Treatment Method of Wastewater with Trinitrotoluene Content

Authors: Ines Nitoi, Petruta Oancea, Lucian Constantin, Laurentiu Dinu, Maria Crisan, Malina Raileanu, Ionut Cristea

Abstract:

2,4,6-Trinitrotoluene (TNT) is the most common pollutant identified in wastewater generated from munitions plants where this explosive is synthesized or handled (munitions load, assembly and pack operations). Due to their toxic and suspected carcinogenic characteristics, nitroaromatic compounds like TNT are included on the list of prioritary pollutants and strictly regulated in EU countries. Since their presence in water bodies is risky for human health and aquatic life, development of powerful, modern treatment methods like photocatalysis are needed in order to assures environmental pollution mitigation. The photocatalytic degradation of TNT was carried out at pH=7.8, in aqueous TiO2 based catalyst suspension, under sunlight irradiation. The enhanced photo activity of catalyst in visible domain was assured by 0.5% Fe doping. TNT degradation experiments were performed using a tubular collector type solar photoreactor (26 UV permeable silica glass tubes series connected), plug in a total recycle loops. The influence of substrate concentration and catalyst dose on the pollutant degradation and mineralization by-products (NO2-, NO3-, NH4+) formation efficiencies was studied. In order to compare the experimental results obtained in various working conditions, the pollutant and mineralization by-products measured concentrations have been considered as functions of irradiation time and cumulative photonic energy Qhν incident on the reactor surface (kJ/L). In the tested experimental conditions, at tens mg/L pollutant concentration, increase of 0,5%-TiO2 dose up to 200mg/L leads to the enhancement of CB degradation efficiency. Since, doubling of TNT content has a negative effect on pollutant degradation efficiency, in similar experimental condition, prolonged irradiation time from 360 to 480 min was necessary in order to assures the compliance of treated effluent with limits imposed by EU legislation (TNT ≤ 10µg/L).

Keywords: wastewater treatment, TNT, photocatalysis, environmental engineering

Procedia PDF Downloads 325
56 Absence of Malignancy in Oral Epithelial Cells from Individuals Occupationally Exposed to Organic Solvents Working in the Shoe Industry

Authors: B. González-Yebra, B. Flores-Nieto, P. Aguilar-Salinas, M. Preciado Puga, A. L. González Yebra

Abstract:

The monitoring of populations occupationally exposed to organic solvents has been an important issue for several shoe factories for years since the International Agency for Research on Cancer (IARC) has advised on the potential carcinogenic risk of chemicals related to occupations. In order to detect if exposition to organic solvents used in some Mexican shoe factories contributes to oral carcinogenesis, we performed monitoring in three factories. Occupational exposure was determined by using monitors 3M. Organic solvents were assessed by gas chromatography. Then, we recruited 30 shoe workers (30.2 ± 8.4 years) and 10 unexposed subjects (43.3 ± 11.2 years) for the micronuclei (MN) test and immunodetection of some cancer biomarkers (ki-67, p16, caspase-3) in scraped oral epithelial cells. Monitored solvents detected were acetone, benzene, hexane, methyl ethyl ketone, and toluene in acceptable levels according to Official Mexican Norm. We found by MN test higher incidence of nuclear abnormalities (karyorrhexis, pycnosis, karyolysis, condensed chromatin, and macronuclei) in the exposed group than the non-exposed group. On the other hand, we found, a negative expression for Ki-67 and p16 in exfoliated epithelial cells from exposed and non-exposed to organic solvents subjects. Only caspase-3 shown positive patter of expression in 9/30 (30%) exposed subjects, and we detected high karyolysis incidence in caspase-3 subjects (p = 0.021). The absence of expression of proliferation markers p16 and ki-67 and presence of apoptosis marker caspase-3 are indicating the absence of malignancy in oral epithelial cells and low risk for oral cancer. It is a fact that the MN test is a very effective method to detect nuclear abnormalities in exfoliated buccal cells from subjects that have been exposed to organic solvents in the shoe industry. However, in order to improve this tool and predict cancer risk is it is mandatory to implement complementary tests as other biomarkers that can help to detect malignancy in individuals occupationally exposed.

Keywords: biomarkers, oral cancer, organic solvents, shoe industries

Procedia PDF Downloads 106
55 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 147
54 Evaluation of Some Trace Elements in Biological Samples of Egyptian Viral Hepatitis Patients under Nutrition Therapy

Authors: Tarek Elnimr, Reda Morsy, Assem El Fert, Aziza Ismail

Abstract:

Hepatitis is an inflammation of the liver. The condition can be self-limiting or can progress to fibrosis, cirrhosis or liver cancer. Disease caused by the hepatitis virus, the virus can cause hepatitis infection, ranging in severity from a mild illness lasting a few weeks to a serious, lifelong illness. A growing body of evidence indicates that many trace elements play important roles in a number of carcinogenic processes that proceed with various mechanisms. To examine the status of trace elements during the development of hepatic carcinoma, we determined the iron, copper, zinc and selenium levels in some biological samples of patients at different stages of viral hepatic disease. We observed significant changes in the iron, copper, zinc and selenium levels in the biological samples of patients hepatocellular carcinoma, relative to those of healthy controls. The mean hair, nail, RBC, serum and whole blood copper levels in patients with hepatitis virus were significantly higher than that of the control group. In contrast the mean iron, zinc, and selenium levels in patients having hepatitis virus were significantly lower than those of the control group. On the basis of this study, we identified the impact of natural supplements to improve the treatment of viral liver damage, using the level of some trace elements such as, iron, copper, zinc and selenium, which might serve as biomarkers for increases survival and reduces disease progression. Most of the elements revealed diverse and random distribution in the samples of the donor groups. The correlation study pointed out significant disparities in the mutual relationships among the trace elements in the patients and controls. Principal component analysis and cluster analysis of the element data manifested diverse apportionment of the selected elements in the scalp hair, nail and blood components of the patients compared with the healthy counterparts.

Keywords: hepatitis, hair, nail, blood components, trace element, nutrition therapy, multivariate analysis, correlation, ICP-MS

Procedia PDF Downloads 378
53 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 73
52 Unveiling the Reaction Mechanism of N-Nitroso Dimethyl Amine Formation from Substituted Hydrazine Derivatives During Ozonation: A Computational Study

Authors: Rehin Sulay, Anandhu Krishna, Jintumol Mathew, Vibin Ipe Thomas

Abstract:

N-Nitrosodimethyl amine, the simplest member of the N-Nitrosoamine family, is a carcinogenic and mutagenic agent that has gained considerable research interest owing to its toxic nature. Ozonation of industrially important hydrazines such as unsymmetrical dimethylhydrazine (UDMH) or monomethylhydrazine (MMH) has been associated with NDMA formation and accumulation in the environment. UDMH/MMH - ozonation also leads to several other transformation products such as acetaldehyde dimethyl hydrazone (ADMH), tetramethyl tetra azene (TMT), diazomethane, methyl diazene, etc, which can be either precursors or competitors for NDMA formation.In this work, we explored the formation mechanism of ADMH and TMT from UDMH-ozonation and their further oxidation to NDMA using the second-order Moller Plesset perturbation theory employing the 6-311G(d) basis set. We have also investigated how MMH selectively forms methyl diazene and diazomethane under normal conditions and NDMA in the presence of excess ozone. Our calculations indicate that the reactions proceed via an initial H abstraction from the hydrazine –NH2 group followed by the oxidation of the generated N-radical species. The formation of ADMH from the UDMH-ozone reaction involves an acetaldehyde intermediate, which then reacts with a second UDMH molecule to generate ADMH. The preferable attack of ozone molecule on N=C bond of ADMH generates DMAN intermediate, which subsequently undergoes oxidation to form NDMA. Unlike other transformation products, TMT formation occurs via the dimerization of DMAN. Though there exist a N=N bonds in the TMT, which are preferable attacking sites for ozone, experimental studies show the lower yields of NDMA formation, which corroborates with the high activation barrier required for the process(42kcal/mol).Overall, our calculated results agree well with the experimental observations and rate constants. Computational calculations bring insights into the electronic nature and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

Keywords: reaction mechanism, ozonation, substituted hydrazine, transition state

Procedia PDF Downloads 54
51 Human TP53 Three Dimentional (3D) Core Domain Hot Spot Mutations at Codon, 36, 72 and 240 are Associated with Oral Squamous Cell Carcinoma

Authors: Saima Saleem, Zubair Abbasi, Abdul Hameed, Mansoor Ahmed Khan, Navid Rashid Qureshi, Abid Azhar

Abstract:

Oral Squamous Cell Carcinoma (OSCC) is the leading cause of death in the developing countries like Pakistan. This problem aggravates because of the excessive use of available chewing products. In spite of widespread information on their use and purported legislations against their use the Pakistani markets are classical examples of selling chewable carcinogenic mutagens. Reported studies indicated that these products are rich in reactive oxygen species (ROS) and polyphenols. TP53 gene is involved in the suppression of tumor. It has been reported that somatic mutations caused by TP53 gene are the foundation of the cancer. This study aims to find the loss of TP53 functions due to mutation/polymorphism caused by genomic alteration and interaction with tobacco and its related ingredients. Total 260 tissues and blood specimens were collected from OSCC patients and compared with age and sex matched controls. Mutations in exons 2-11 of TP53 were examined by PCR-SSCP. Samples showing mobility shift were directly sequenced. Two mutations were found in exon 4 at nucleotide position 108 and 215 and one in exon 7 at nucleotide position 719 of the coding sequences in patient’s tumor samples. These results show that substitution of proline with arginine at codon 72 and serine with threonine at codon 240 of p53 protein. These polymorphic changes, found in tumor samples of OSCC, could be involved in loss of heterozygocity and apoptotic activity in the binding domain of TP53. The model of the mutated TP53 gene elaborated a nonfunctional unfolded p53 protein, suggesting an important role of these mutations in p53 protein inactivation and malfunction. This nonfunctional 3D model also indicates that exogenous tobacco related carcinogens may act as DNA-damaging agents affecting the structure of DNA. The interpretations could be helpful in establishing the pathways responsible for tumor formation in OSCC patients.

Keywords: TP53 mutation/polymorphism, OSCC, PCR-SSCP, direct DNA sequencing, 3D structure

Procedia PDF Downloads 343
50 IL-23, an Inflammatory Cytokine, Decreased by Shark Cartilage and Vitamin A Oral Treatment in Patient with Gastric Cancer

Authors: Razieh Zarei, Hassan zm, Abolghasem Ajami, Darush Moslemi, Narges Afsary, Amrollah Mostafa-zade

Abstract:

Introduction: IL-23 is responsible for the differentiation and expansion of Th17/ThIL-17 cells from naive CD4+ T cells. Therefore, may be IL-23/IL17 axis involve in a variety of allergic and autoimmune diseases, such as RA, MS, inflammatory bowel disease (IBD), and asthma. TGF-β is also share for the differentiation Th17 producing IL-17 and CD4+CD25+Foxp3hiT regulatory cells from naïve CD4+ T cells which are involved in the regulation of immune response, maintaining immunological self-tolerance and immune homeostasis ,and the control of autoimmunity and cancer surveillance. Therefore, T regulatory cells play a key role in autoimmunity, allergy, cancer, infectious disease, and the induction of transplantation tolerance. Vitamin A and it's derivatives (retinoids) inhibit or reverse the carcinogenic process in some types of cancers in oral cavity,head and neck, breast, skin, liver, and blood cells. Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, in vitro. Our purpose is whether simultaneous oral treatment vitamin A and shark cartilage can modulate IL-23/IL-17 and CD4CD25Foxp3 T regulatory cell/TGF-β pathways and Th1/Th2 immunity in patients with gastric cancer. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23,IL-17,TGF-β,IL-4 and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: An imbalance between IL-17 secretion and TGF-β/Foxp3 t regulatory cell pathway and so, Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) was not seen in patients with gastric cancer treated by vitamin A and shark cartilage. But, the simultaneously presented down-regulation of IL-23 indicated, at least cytokine level. Conclusion: Il-23, as a pro-angiogenesis cytokine, probably, help to tumor growth. Hence, suggested that down-regulation of IL-23, at least cytokine level, is useful for anti-tumor immune responses in patients with gastric cancer.

Keywords: IL-23/IL17 axis, TGF-β/CD4CD25Foxp3 T regulatory pathway, γ-IFN, IL-4, shark cartilage and gastric cancer

Procedia PDF Downloads 369
49 Health Risk Assessment and Source Apportionment of Elemental Particulate Contents from a South Asian Future Megacity

Authors: Afifa Aslam, Muhammad Ibrahim, Abid Mahmood, Muhammad Usman Alvi, Fariha Jabeen, Umara Tabassum

Abstract:

Many factors cause air pollution in Pakistan, which poses a significant threat to human health. Diesel fuel and gasoline motor vehicles, as well as industrial companies, pollute the air in Pakistan's cities. The study's goal is to determine the level of air pollution in a Pakistani industrial city and to establish risk levels for the health of the population. We measured the intensity of air pollution by chemical characterization and examination of air samples collected at stationary remark sites. The PM10 levels observed at all sampling sites, including residential, commercial, high-traffic, and industrial areas were well above the limits imposed by Pakistan EPA, the United States EPA, and WHO. We assessed the health risk via chemical factors using a methodology approved for risk assessment. All Igeo index values greater than one were considered moderately contaminated or moderately to severely contaminated. Heavy metals have a substantial risk of acute adverse effects. In Faisalabad, Pakistan, there was an enormously high risk of chronic effects produced by a heavy metal acquaintance. Concerning specified toxic metals, intolerable levels of carcinogenic risks have been determined for the entire population. As a result, in most of the investigated areas of Faisalabad, the indices and hazard quotients for chronic and acute exposure exceeded the permissible level of 1.0. In the current study, re-suspended roadside mineral dust, anthropogenic exhaust emissions from traffic and industry, and industrial dust were identified as major emission sources of elemental particulate contents. Because of the unacceptable levels of risk in the research area, it is strongly suggested that a comprehensive study of the population's health status as a result of air pollution should be conducted for policies to be developed against these risks.

Keywords: elemental composition, particulate pollution, Igeo index, health risk assessment, hazard quotient

Procedia PDF Downloads 45
48 Insecticidal and Repellent Efficacy of Clove and Lemongrass Oils Against Museum Pest, Lepisma Saccharina (Zygentoma: Lepismatidae)

Authors: Suboohi Nasrin, MHD. Shahid, Abduraheem K.

Abstract:

India is a tropical country, and it is estimated that biological and abiological agents are the major factors in the destruction and deterioration of archival materials like herbarium, paper, cellulose, bookbinding, etc. Silverfish, German Cockroaches, Termites, Booklice, Tobacco beetle and Carpet beetles are the common insect's pests in the museum, which causes deterioration to collections of museum specimens. Among them, silverfish is one of the most notorious pests and primarily responsible for the deterioration of Archival materials. So far, the investigation has been carried to overcome this existing problem as different management strategies such as chemical insecticides, fungicides, herbicides, nematicides, etc., have been applied. Moreover, Synthetic molecules lead to affect the ecological balance, have a detrimental effects on human health, reduce the beneficial microbial flora and fauna, etc. With a view, numbers of chemicals have been banned and advised not to be used due to their long-lasting persistency in soil ecosystem, water and carcinogenic. That’s why the authors used natural products with biocidal activity, cost-effective and eco-friendly approaches. In this study, various concentrations (30, 60 and 90 ml/L) of clove and lemongrass essential oil at different treatment duration (30, 60, 90 and 120-minutes) were investigated to test its properties as a silverfish repellent and insecticidal effect. The result of two ways ANOVA revealed that the mortality was significantly influenced by oil concentration, treatment duration and interaction between two independent factors was also found significant. The mortality rate increased with increasing the oil concentration in clove oil, and 100 % mortality was recorded in 0.9 ml at 120-minute. It was also observed that the treatment duration has the highest effect on the mortality rate of silverfish. The clove oil had the greatest effect on the silverfish in comparison to lemongrass. While in the case of percentage, repellency of adult silverfish was oil concentration and treatment duration-dependent, i.e., increase in concentration and treatment duration resulted in higher repellency percentage. The clove oil was found more effective, showing maximum repellency of 80.00% at 0.9ml/cm2 (highest) concentration, and in lemongrass highest repellency was observed at 33.4% at 0.9 ml/cm2 concentration in the treated area.

Keywords: adult silverfish, oils, oil concentration, treatment duration, mortality (%) and repellency

Procedia PDF Downloads 133
47 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 297
46 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater

Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega

Abstract:

Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).

Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater

Procedia PDF Downloads 145
45 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates

Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić

Abstract:

Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.

Keywords: cherry pomace, microencapsulation, polyphenols, storage

Procedia PDF Downloads 338
44 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater

Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah

Abstract:

Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and   amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.

Keywords: nanocomposite, sorbent materials, waste water, waste polystyrene

Procedia PDF Downloads 399