Search results for: cancer cell line
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7157

Search results for: cancer cell line

6797 The Activity of Polish Propolis and Cannabidiol Oil Extracts on Glioblastoma Cell Lines

Authors: Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Justyna Moskwa, Krystyna Gromkowska-Kepka, Konrad Mielcarek, Patryk Nowakowski, Katarzyna Socha, Anna Puscion-Jakubik, Maria H. Borawska

Abstract:

Glioblastoma (grade IV WHO) is a rapidly progressive brain tumor with very high morbidity and mortality. The vast malignant gliomas are not curable despite the therapy (surgical, radiotherapy, chemotherapy) and patients seek alternative or complementary treatments. Patients often use cannabidiol (CBD) oil as an alternative therapy of glioblastoma. CBD is one of the cannabinoids, an active component of Cannabis sativa. THC (Δ9-tetrahydrocannabinol) can be addictive, and in many countries CBD oil without THC ( < 0,2%) is available. Propolis produced by bees from the resin collected from trees has antiglioma properties in vitro and can be used as a supplement in complementary therapy of gliomas. The aim of this study was to examine the influence of extract from CBD oil in combination with propolis extract on two glioblastoma cell lines. The MTT (Thiazolyl Blue Tetrazolium Bromide) test was used to determine the influence of CBD oil extract and polish propolis extract (PPE) on the viability of glioblastoma cell lines – U87MG and LN18. The cells were incubated (24, 48 and 72 h) with CBD oil extract and PPE. CBD extract was used in concentration 1, 1.5 and 3 µM and PPE in 30 µg/mL. The data were presented compared to the control. The statistical analysis was performed using Statistica v. 13.0 software. CBD oil extract in concentrations 1, 1.5 and 3 µM did not inhibit the viability of U87MG and LN18 cells (viability more than 90% cells compared to the control). There was no dose-response viability, and IC50 value was not recognized. PPE in the concentration of 30 µg/mL time-dependently inhibited the viability of U87MG and LN18 cell line (after 48 h the viability as a percent of the control was 59,7±6% and 57,8±7%, respectively). In a combination of CBD with PPE, the viability of the treated cells was similar to PPE used alone (58,2±7% and 56,5±9%, respectively). CBD oil extract did not show anti-glioma activity and in combination with PPE did not change the activity of PPE.

Keywords: anticancer, cannabidiol, cell line, glioblastoma

Procedia PDF Downloads 217
6796 TNF Modulation of Cancer Stem Cells in Renal Clear Cell Carcinoma

Authors: Rafia S. Al-lamki, Jun Wang, Simon Pacey, Jordan Pober, John R. Bradley

Abstract:

Tumor necrosis factor alpha (TNF), signaling through TNFR2, may act an autocrine growth factor for renal tubular epithelial cells. Clear cell renal carcinomas (ccRCC) contain cancer stem cells (CSCs) that give rise to progeny which form the bulk of the tumor. CSCs are rarely in cell cycle and, as non-proliferating cells, resist most chemotherapeutic agents. Thus, recurrence after chemotherapy may result from the survival of CSCs. Therapeutic targeting of both CSCs and the more differentiated bulk tumor populations may provide a more effective strategy for treatment of RCC. In this study, we hypothesized that TNFR2 signaling will induce CSCs in ccRCC to enter cell cycle so that treatment with ligands that engage TNFR2 will render CSCs susceptible to chemotherapy. To test this hypothesis, we have utilized wild-type TNF (wtTNF) or specific muteins selective for TNFR1 (R1TNF) or TNFR2 (R2TNF) to treat either short-term organ cultures of ccRCC and adjacent normal kidney (NK) tissue or cultures of CD133+ cells isolated from ccRCC and adjacent NK, hereafter referred to as stem cell-like cells (SCLCs). The effect of cyclophosphamide (CP), currently an effective anticancer agent, was tested on CD133+SCLCs from ccRCC and NK before and after R2TNF treatment. Responses to TNF were assessed by flow cytometry (FACS), immunofluorescence, and quantitative real-time PCR, TUNEL, and cell viability assays. Cytotoxic effect of CP was analyzed by Annexin V and propidium iodide staining with FACS. In addition, we assessed the effect of TNF on isolated SCLCs differentiation using a three-dimensional (3D) culture system. Clinical samples of ccRCC contain a greater number SCLCs compared to NK and the number of SCSC increases with higher tumor grade. Isolated SCLCs show expression of stemness markers (oct4, Nanog, Sox2, Lin28) but not differentiation markers (cytokeratin, CD31, CD45, and EpCAM). In ccRCC organ cultures, wtTNF and R2TNF increase CD133 and TNFR2 expression and promote cell cycle entry whereas wtTNF and R1TNF increase TNFR1 expression and promote cell death of SCLCs. Similar findings are observed in SCLCs isolated from NK but the effect was greater in SCLCs isolated from ccRCC. Application of CP distinctly triggered apoptotic and necrotic cell death in SLCSs pre-treatment with R2TNF as compared to CP treatment alone, with SCLCs from ccRCC more sensitive to CP compared to SLCS from NK. Furthermore, TNF promotes differentiation of SCLCs to an epithelial phenotype in 3D cultures, confirmed by cytokeratin expression and loss of stemness markers Nanog and Sox2. The differentiated cells show positive expression of TNF and TNFR2. These findings provide evidence that selective engagement of TNFR2 drive CSCs to cell proliferation/differentiation, and targeting of cycling cells with TNFR2 agonist in combination with anti-cancer agents may be a potential therapy for RCC.

Keywords: cancer stem cells, ccRCC, cell cycle, cell death, TNF, TNFR1, TNFR2, CD133

Procedia PDF Downloads 242
6795 Sensing of Cancer DNA Using Resonance Frequency

Authors: Sungsoo Na, Chanho Park

Abstract:

Lung cancer is one of the most common severe diseases driving to the death of a human. Lung cancer can be divided into two cases of small-cell lung cancer (SCLC) and non-SCLC (NSCLC), and about 80% of lung cancers belong to the case of NSCLC. From several studies, the correlation between epidermal growth factor receptor (EGFR) and NSCLCs has been investigated. Therefore, EGFR inhibitor drugs such as gefitinib and erlotinib have been used as lung cancer treatments. However, the treatments result showed low response (10~20%) in clinical trials due to EGFR mutations that cause the drug resistance. Patients with resistance to EGFR inhibitor drugs usually are positive to KRAS mutation. Therefore, assessment of EGFR and KRAS mutation is essential for target therapies of NSCLC patient. In order to overcome the limitation of conventional therapies, overall EGFR and KRAS mutations have to be monitored. In this work, the only detection of EGFR will be presented. A variety of techniques has been presented for the detection of EGFR mutations. The standard detection method of EGFR mutation in ctDNA relies on real-time polymerase chain reaction (PCR). Real-time PCR method provides high sensitive detection performance. However, as the amplification step increases cost effect and complexity increase as well. Other types of technology such as BEAMing, next generation sequencing (NGS), an electrochemical sensor and silicon nanowire field-effect transistor have been presented. However, those technologies have limitations of low sensitivity, high cost and complexity of data analyzation. In this report, we propose a label-free and high-sensitive detection method of lung cancer using quartz crystal microbalance based platform. The proposed platform is able to sense lung cancer mutant DNA with a limit of detection of 1nM.

Keywords: cancer DNA, resonance frequency, quartz crystal microbalance, lung cancer

Procedia PDF Downloads 207
6794 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn

Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem

Abstract:

Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.

Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective

Procedia PDF Downloads 175
6793 Phylogenetic Study of L1 Protein Human Papillomavirus Type 16 From Cervical Cancer Patients in Bandung

Authors: Fitri Rahmi Fadhilah, Edhyana Sahiratmadja, Ani Melani Maskoen, Ratu Safitri, Supartini Syarif, Herman Susanto

Abstract:

Cervical cancer is the second most common cancer in women after breast cancer. In Indonesia, the incidence of cervical cancer cases is estimated at 25-40 per 100,000 women per year. Human papillomavirus (HPV) infection is a major cause of cervical cancer, and HPV-16 is the most common genotype that infects the cervical tissue. The major late protein L1 may be associated with infectivity and pathogenicity and its variation can be used to classify HPV isolates. The aim of this study was to determine the phylogenetic tree of HPV 16 L1 gene from cervical cancer patient isolates in Bandung. After confirming HPV-16 by Linear Array Genotyping Test, L1 gene was amplified using specific primers and subject for sequencing. Phylogenetic analysis revealed that HPV 16 from Bandung was in the subgroup of Asia and East Asia, showing the close host-agent relationship among the Asian type.

Keywords: L1 HPV 16, cervical cancer, bandung, phylogenetic

Procedia PDF Downloads 474
6792 Effect of Renin Angiotensin Pathway Inhibition on the Efficacy of Anti-programmed Cell Death (PD-1/L-1) Inhibitors in Advanced Non-small Cell Lung Cancer Patients- Comparison of Single Hospital Retrospective Assessment to the Published Literature

Authors: Esther Friedlander, Philip Friedlander

Abstract:

The use of immunotherapy that inhibits programmed death-1 (PD-1) or its ligand PD-L1 confers survival benefits in patients with non-small cell lung cancer (NSCLC). However, approximately 45% of patients experience primary treatment resistance, necessitating the development of strategies to improve efficacy. While the renin-angiotensin system (RAS) has systemic hemodynamic effects, tissue-specific regulation exists along with modulation of immune activity in part through regulation of myeloid cell activity, leading to the hypothesis that RAS inhibition may improve anti-PD-1/L-1 efficacy. A retrospective analysis was conducted that included 173 advanced solid tumor cancer patients treated at Valley Hospital, a community Hospital in New Jersey, USA, who were treated with a PD-1/L-1 inhibitor in a defined time period showing a statistically significant relationship between RAS pathway inhibition (RASi through concomitant treatment with an ACE inhibitor or angiotensin receptor blocker) and positive efficacy to the immunotherapy that was independent of age, gender and cancer type. Subset analysis revealed strong numerical benefit for efficacy in both patients with squamous and nonsquamous NSCLC as determined by documented clinician assessment of efficacy and by duration of therapy. A PUBMED literature search was now conducted to identify studies assessing the effect of RAS pathway inhibition on anti-PD-1/L1 efficacy in advanced solid tumor patients and compare these findings to those seen in the Valley Hospital retrospective study with a focus on NSCLC specifically. A total of 11 articles were identified assessing the effects of RAS pathway inhibition on the efficacy of checkpoint inhibitor immunotherapy in advanced cancer patients. Of the 11 studies, 10 assessed the effect on survival of RASi in the context of treatment with anti-PD-1/PD-L1, while one assessed the effect on CTLA-4 inhibition. Eight of the studies included patients with NSCLC, while the remaining 2 were specific to genitourinary malignancies. Of the 8 studies, two were specific to NSCLC patients, with the remaining 6 studies including a range of cancer types, of which NSCLC was one. Of these 6 studies, only 2 reported specific survival data for the NSCLC subpopulation. Patient characteristics, multivariate analysis data and efficacy data seen in the 2 NSLCLC specific studies and in the 2 basket studies, which provided data on the NSCLC subpopulation, were compared to that seen in the Valley Hospital retrospective study supporting a broader effect of RASi on anti-PD-1/L1 efficacy in advanced NSLCLC with the majority of studies showing statistically significant benefit or strong statistical trends but with one study demonstrating worsened outcomes. This comparison of studies extends published findings to the community hospital setting and supports prospective assessment through randomized clinical trials of efficacy in NSCLC patients with pharmacodynamic components to determine the effect on immune cell activity in tumors and on the composition of the tumor microenvironment.

Keywords: immunotherapy, cancer, angiotensin, efficacy, PD-1, lung cancer, NSCLC

Procedia PDF Downloads 42
6791 Surface Modified Polyamidoamine Dendrimer with Gallic Acid Overcomes Drug Resistance in Colon Cancer Cells HCT-116

Authors: Khushbu Priyadarshi, Chandramani Pathak

Abstract:

Cancer cells can develop resistance to conventional therapies especially chemotherapeutic drugs. Resistance to chemotherapy is another challenge in cancer therapeutics. Therefore, it is important to address this issue. Gallic acid (GA) is a natural plant compound that exhibits various biological properties including anti-proliferative, anti-inflammatory, anti-oxidant and anti-bacterial. Despite of the wide spectrum biological properties GA has cytotoxic response and low bioavailability. To overcome this problem, GA was conjugated with the Polyamidoamine(PAMAM) dendrimer for improving the bioavailability and efficient delivery in drug-resistant HCT-116 Colon Cancer cells. Gallic acid was covalently linked to 4.0 G PAMAM dendrimer. PAMAM dendrimer is well established nanocarrier but has cytotoxicity due to presence of amphiphilic nature of amino group. In our study we have modified surface of PAMAM dendrimer with Gallic acid and examine their anti-proliferative effects in drug-resistant HCT-116 cells. Further, drug-resistant colon cancer cells were established and thereafter treated with different concentration of PAMAM-GA to examine their anti-proliferative potential. Our results show that PAMAM-GA conjugate induces apoptotic cell death in HCT-116 and drug-resistant cells observed by Annexin-PI staining. In addition, it also shows that multidrug-resistant drug transporter P-gp protein expression was downregulated with increasing the concentration of GA conjugate. After that we also observed the significant difference in Rh123 efflux and accumulation in drug sensitive and drug-resistant cancer cells. Thus, our study suggests that conjugation of anti-cancer agents with PAMAM could improve drug resistant property and cytotoxic response to treatment of cancer.

Keywords: drug resistance, gallic acid, PAMAM dendrimer, P-glycoprotein

Procedia PDF Downloads 127
6790 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes

Authors: S. N. Harun, H. Ahmad

Abstract:

A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.

Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer

Procedia PDF Downloads 278
6789 Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract

Authors: P. Narrima, C. Y. Looi, M. A. Mohd, H. M. Ali

Abstract:

Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.

Keywords: antiproliferative, apoptosis, MCF-7 human breast cancer, Persea declinata

Procedia PDF Downloads 223
6788 Management of Renal Malignancies with IVC Thrombus: Our Experience

Authors: Sujeet Poudyal

Abstract:

Introduction: Renal cell carcinoma is the most common malignancy associated with Inferior vena cava (IVC) thrombosis. Radical nephrectomy with tumor thrombectomy provides durable cancer-free survival. Other renal malignancies like Wilms’ tumors are also associated with IVC thrombus. We describe our experience with the management of renal malignancies associated with IVC thrombus. Methods: This prospective study included 28 patients undergoing surgery for renal malignancies associated with IVC thrombus from February 2017 to March 2023. Demographics of patients, types of renal malignancy, level of IVC thrombus, intraoperative details, need for venovenous bypass, cardiopulmonary bypass and postoperative outcomes were all documented. Results: Out of a total of 28 patients, 24 patients had clear cell Renal Cell Carcinoma,1 had renal osteosarcoma and 3 patients had Wilms tumor. The levels. of thrombus were II in eight, III in seven, and IV in six patients. The mean age of RCC was 62.81±10.2 years, renal osteosarcoma was 26 years and Wilms tumor was 23 years. There was a need for venovenous bypass in four patients and cardiopulmonary bypass in four patients, and the Postoperative period was uneventful in most cases except for two mortalities, one in Level III due to pneumonia and one in Level IV due to sepsis. All cases followed up till now have no local recurrence and metastasis except one case of RCC with Level IV IVC thrombus, which presented with paraaortic nodal recurrence and is currently managed with sunitinib. Conclusion: The complexity in the management of renal malignancy with IVC thrombus increases with the level of IVC thrombus. As radical nephrectomy with tumor thrombectomy provides durable cancer-free survival in most cases, the surgery should be undertaken in an expert and experienced setup with a strong cardiovascular backup to minimize morbidity and mortality associated with the procedure.

Keywords: renal malignancy, IVC thrombus, radical nephrectomy with tumor thrombectomy, renal cell carcinoma

Procedia PDF Downloads 46
6787 Modulation of Tamoxifen-Induced Cytotoxicity in Breast Cancer Cell Lines by 3-Bromopyruvate

Authors: Yasmin M. Attia, Hanan S. El-Abhar, Mahmoud M. Al Marzabani, Samia A. Shouman

Abstract:

Background: Tamoxifen (TAM) is the most commonly used hormone therapy for the treatment of early and metastatic breast cancer. Although it significantly decreases the tumor recurrence rate and provides an overall benefit, as much as 20–30% of women still relapse during or after long-term therapy. 3-Bromopyruvate (3-BP) is a promising agent with impressive antitumor effects in several models of animal tumors and cell lines. Aim: This study was designed to investigate the combined effect of (TAM) and (3-BP) in breast cancer cells and to explore their molecular interaction via assessment of apoptotic, angiogenic, and metastatic markers. Methods: In vitro cytotoxicity study was carried out for both compounds to determine the combination regimen producing a synergistic effect and mechanistic pathways were studied using RT-PCR and western techniques. Moreover, the anti-oncolytic and anti-angiogenic potentials were assessed in mice bearing solid Ehrlich carcinoma (SEC). Results: The combined treatment significantly increased the expressions and protein levels of caspase 7, 9, and 3 and decreased of angiogenic markers VEGF, HIF-1α, and HK2 compared to cells treated with either drug individually. However, there were no significant changes in MMP-2 and MMP-9 protein levels. Interestingly, the in vivo results supported the in vitro findings; there was a decrease in the tumor volume and VEFG using immunohistochemistry in the combination-treated groups compared to either TAM or 3-BP treated one. Conclusion: 3-BP synergizes the cytotoxic effect of TAM by increasing apoptosis and decreasing angiogenesis which makes this combination a promising regimen to be applied clinically.

Keywords: tamoxifen, 3-bromopyruvate, breast cancer, cytotoxicity, angiogenesis

Procedia PDF Downloads 207
6786 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 304
6785 Anticancer Activity of Calyx of Diospyros kaki Thunb. through Downregulation of Cyclin D1 Protein Level in Human Colorectal Cancer Cells

Authors: Jin Boo Jeong

Abstract:

In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β–catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03931713).

Keywords: anticancer, calyx of persimmon, cyclin D1, Diospyros kaki Thunb., human colorectal cancer

Procedia PDF Downloads 290
6784 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216B-5p Expression Level

Authors: Ramin Mehdiabadi

Abstract:

Background: Breast cancer remains the most prevalent cancer diagnosis and the leading cause of cancer death among women globally, representing 11.7% of new cases and 6.9% of deaths. While the incidence and mortality of major cancers are declining in developed regions like the United States and Western Europe, underdeveloped and developing countries exhibit an increasing trend, attributed to lifestyle factors such as smoking, physical inactivity, and high-calorie diets. Objective: This study explores the intricate relationship between the mammalian transcription factor forkhead box (FoxM1) and the microRNA miR-216b-5p in various subtypes of breast cancer, aiming to deepen the understanding of their roles in tumorigenesis, metastasis, and drug resistance. Methods: Breast cancer subtypes were categorized based on key biomarkers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. These include luminal A, luminal B, HER2 enriched, triple-negative, and normal-like subtypes. We focused on analyzing the expression levels of FoxM1 and miR-216b-5p, given the known role of FoxM1 in cell proliferation and its implications in cancer pathologies such as lung, gastric, and breast cancers. Concurrently, miR-216b-5p's function as a tumor suppressor was evaluated to ascertain its regulatory effects on FoxM1. Results: Preliminary data indicate a nuanced interplay between FoxM1 and miR-216b-5p, suggesting a potential inverse relationship that varies across breast cancer subtypes. This relationship underscores the dual role of these biomarkers in modulating cancer progression and response to treatments. Conclusion: The findings advocate for the potential of miR-216b-5p to serve as a prognostic biomarker and a therapeutic target, particularly in subtypes where FoxM1 is prominently expressed. Understanding these molecular interactions provides crucial insights into the personalized treatment strategies and could lead to more effective therapeutic interventions in breast cancer management. Implications: The study highlights the importance of molecular profiling in breast cancer treatment and emphasizes the need for targeted therapeutic approaches in managing diverse cancer subtypes, particularly in varying global contexts where lifestyle factors significantly impact cancer dynamics.

Keywords: breast cancer, gene expression, FoxM1, microRNA

Procedia PDF Downloads 15
6783 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 177
6782 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 201
6781 DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs

Authors: Michio Kurosu

Abstract:

Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented.

Keywords: DPAGT1 inhibitors, anti-metastatic drugs, natural product based drug designs, cytostatic effects

Procedia PDF Downloads 46
6780 The Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2)-derived Oncolytic Protein Reprograms Tumor-Associated Macrophages

Authors: Farrah Putri Salmanida, Mei-Li Wu, Rika Wahyuningtyas, Wen-Bin Chung, Hso-Chi Chaung, Ko-Tung Chang

Abstract:

Within the field of immunotherapy, oncolytic virotherapy (OVT) employs dual approaches that directly eliminate tumor cells while preserving healthy ones and indirectly reprogram the tumor microenvironment (TME) to elicit antitumor responses. Within the TME, tumor associated macrophages (TAMs) manifest characteristics akin to those of anti-inflammatory M2 macrophages, thus earning the designation of M2-like TAMs. In prior research, two antigens denoted as A1 (g6Ld10T) and A3 (ORF6L5), derived from a complete sequence of ORF5 with partial sequence of ORF6 in Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2), demonstrated the capacity to repolarize M2-type porcine alveolar macrophages (PAMs) into M1 phenotypes. In this study, we sought for utilizing OVT strategies by introducing A1 or A3 on TAMs to endow them with the anti-tumor traits of M1 macrophages while retaining their capacity to target cancer cells. Upon exposing human THP-1-derived M2 macrophages to a cross-species test with 2 µg/ml of either A1 or A3 for 24 hours, real time PCR revealed that A3, but not A1, treated cells exhibited upregulated gene expressions of M1 markers (CCR7, IL-1ß, CCL2, Cox2, CD80). These cells reacted to virus-derived antigen, as evidenced by increased expression of pattern-recognition receptors TLR3, TLR7, and TLR9, subsequently providing feedback in the form of type I interferon responses like IFNAR1, IFN-ß, IRF3, IRF7, OAS1, Mx1, and ISG15. Through an MTT assay, only after 15 µg/ml of A3 treatment could the cell viability decrease, with a predicted IC50 of 16.96 µg/ml. Interestingly, A3 caused dose-dependent toxicity to a rat C6 glial cancer cell line even at doses as low as 2.5 µg/ml and reached its IC50 at 9.419 µg/ml. Using Annexin V/7AAD staining and PCR test, we deduced that a significant proportion of C6 cells were undergoing the early apoptosis phase predominantly through the intrinsic apoptosis cascade involving Bcl-2 family proteins. Following this stage, we conducted a test on A3’s repolarization ability, which revealed a significant rise in M1 gene expression markers, such as TNF, CD80, and IL-1ß, in M2-like TAMs generated in vitro from murine RAW264.7 macrophages grown with conditioned medium of 4T1 breast cancer cells. This was corroborated by the results of transcriptome analysis, which revealed that the primary subset among the top 10 to top 30 significantly upregulated differentially expressed genes (DEGs) dominantly consisted of M1 macrophages profiles, including Ccl3, Ccl4, Csf3, TNF, Bcl6b, Stc1, and Dusp2. Our findings unveiled the remarkable potential of the PRRSV-derived antigen A3 to repolarize macrophages while also being capable of selectively inducing apoptosis in cancerous cells. While further in vivo study is needed for A3, it holds promise as an adjuvant by its dual effects in cancer therapy modalities.

Keywords: cancer cell apoptosis, interferon responses, macrophage repolarization, recombinant protein

Procedia PDF Downloads 30
6779 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia

Authors: Kheireddine El-Boubbou

Abstract:

Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.

Keywords: magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy

Procedia PDF Downloads 207
6778 Investigating Anti-Tumourigenic and Anti-Angiogenic Effects of Resveratrol in Breast Carcinogenesis Using in-Silico Algorithms

Authors: Asma Zaib, Saeed Khan, Ayaz Ahmed Noonari, Sehrish Bint-e-Mohsin

Abstract:

Breast cancer is the most common cancer among females worldwide and is estimated that more than 450,000 deaths are reported each year. It accounts for about 14% of all female cancer deaths. Angiogenesis plays an essential role in Breast cancer development, invasion, and metastasis. Breast cancer predominantly begins in luminal epithelial cells lining the normal breast ducts. Breast carcinoma likely requires coordinated efforts of both increased proliferation and increased motility to progress to metastatic stages.Resveratrol: a natural stilbenoid, has anti-inflammatory and anticancer effects that inhibits proliferation of variety of human cancer cell lines, including breast, prostate, stomach, colon, pancreatic, and thyroid cancers.The objective of this study is:To investigate anti-neoangiogenesis effects of Resveratrol in breast cancer and to analyze inhibitory effects of resveratrol on aromatase, Erα, HER2/neu, and VEGFR.Docking is the computational determination of binding affinity between molecule (protein structure and ligand).We performed molecular docking using Swiss-Dock and to determine docking effects of (1) Resveratrol with Aromatase, (2) Resveratrol with ERα (3) Resveratrol with HER2/neu and (4) Resveratrol with VEGFR2.Docking results of resveratrol determined inhibitory effects on aromatase with binding energy of -7.28 kcal/mol which shows anticancerous effects on estrogen dependent breast tumors. Resveratrol also show inhibitory effects on ERα and HER2/new with binging energy -8.02, and -6.74 respectively; which revealed anti-cytoproliferative effects upon breast cancer. On the other hand resveratrol v/s VEGFR showed potential inhibitory effects on neo-angiogenesis with binding energy -7.68 kcal/mol, angiogenesis is the important phenomenon that promote tumor development and metastasis. Resveratrol is an anti-breast cancer agent conformed by in silico studies, it has been identified that resveratrol can inhibit breast cancer cells proliferation by acting as competitive inhibitor of aromatase, ERα and HER2 neo, while neo-angiogemesis is restricted by binding to VEGFR which authenticates the anti-carcinogenic effects of resveratrol against breast cancer.

Keywords: angiogenesis, anti-cytoproliferative, molecular docking, resveratrol

Procedia PDF Downloads 298
6777 ZVZCT PWM Boost DC-DC Converter

Authors: Ismail Aksoy, Haci Bodur, Nihan Altintaş

Abstract:

This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.

Keywords: active snubber cell, boost converter, zero current switching, zero voltage switching

Procedia PDF Downloads 999
6776 Evaluation on Estrogenic Effects of Diisononyl Adipate (DiNA) on MCF-7 Human Breast Cancer Cell Lines

Authors: Shih-cheng Li, Ming-Yi Chung, Mei-Lien Chen

Abstract:

Background: Plasticizers, such as phthalates and adipates, were substances added to a material that provided flexibility and durability to plastics such as polyvinyl chloride (PVC). Phthalates were generally recognized as an endocrine disrupter due to their estrogenic and anti-androgenic activities. Phthalates had the capacity to bind to estrogen receptors, and hence they might prolong menstrual cycles and increase the proportion of premature menopause. Recently, adipates such as di-2-ethylhexyl adipate (DEHA) and di-isononyl adipate (DiNA) had replaced phthalates and were now used for food packaging. Methods: MCF-7 cell lines were treated with di-2-ethylhexyl phthalate (DEHP), di- 2-ethylhexyl adipate (DEHA), or di-isononyl adipate (DiNA) (10-6 , 10-5 , and 10-4 mol/l), using 17β-estradiol (10-8 mol/l) as a positive control. After incubations of 24, 48, 72, and 96 hours, the cells were tested using the alamarBlue assay. Results: The alamarBlue assay revealed that cell proliferation significantly increased after treatments of DEHP and DEHA for 24 hours at a concentration of 10-6, 10-5, and 10-4 mol/l. After more than 48 hours, cell proliferations in DEHP at 10-6, 10-5, and 10-4 mol/l significantly decreased compared to the control group. Conclusions: The present study demonstrates that adipates, as well as phthalates, were capable of inducing cell proliferation. We further used MDA-MB-231 cell lines to confirm that the proliferation effect was generated through binding to estrogen receptors.

Keywords: MCF-7, phthalate, adipate, endocrine disrupter

Procedia PDF Downloads 276
6775 Knowledge of Pap Smear Test and Visual Inspection with Acetic Acid in Cervical Cancer Patients in Manado

Authors: Eric Ng, Freddy W. Wagey, Frank M. M. Wagey

Abstract:

Background: Cervical cancer is the fourth most common cancer in women worldwide and the most common cancer in many low- and middle-income countries. The main causes are the lack of prevention programs and effective therapy, as well as the lack of knowledge about cervical cancer and awareness for early detection. The Pap smear test and visual inspection with acetic acid (VIA) allow the cervical lesion to be detected so that progression to cervical cancer can be avoided. Objective: The purpose of this study was to evaluate the knowledge of Pap smear test and VIA in cervical cancer patients. Methodology: A total of 67 cervical cancer patients in Manado who volunteered to participate in the research were identified as the sample. The data were collected during the month of November 2019-January 2020 with a questionnaire about the respondents' knowledge relating to Pap smear test and VIA. Questionnaire data were analysed using descriptive statistics. Results: Knowledge of pap smear among cervical cancer patients were good in 9 respondents (13.4%), moderate in 20 respondents (29.9%), and bad in 38 respondents (56.7%), whereas the knowledge of VIA was good in 13 respondents (19.4%), moderate in 15 respondents (22.4%), and bad in 39 respondents (58.2%). Conclusion: Majority of cervical cancer patients in Manado still had bad knowledge about Pap smear tests and VIA.

Keywords: cervical cancer, knowledge, pap smear test, visual inspection with acetic acid

Procedia PDF Downloads 137
6774 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 426
6773 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma

Authors: Aoxue Yang, Weili Tian, Yonghe Wu, Haikun Liu

Abstract:

Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Little progress has been made in therapeutic treatment of glioblastoma in the last decade despite rapid progress in molecular understanding of brain tumors1. Here we show that the stress hormone glucocorticoid is essential for the maintenance of brain tumor stem cells (BTSCs), which are resistant to conventional therapy. The glucocorticoid receptor (GR) regulates metabolic plasticity and chemoresistance of the dormant BTSC via controlling expression of GPD1 (glycerol-3-phosphate dehydrogenase 1), which is an essential regulator of lipid metabolism in BTSCs. Genomic, lipidomic and cellular analysis confirm that GR/GPD1 regulation is essential for BTSCs metabolic plasticity and survival. We further demonstrate that the GR agonist dexamethasone (DEXA), which is commonly used to control edema in glioblastoma, abolishes the effect of chemotherapy drug temozolomide (TMZ) by upregulating GPD1 and thus promoting tumor cell dormancy in vivo, this provides a mechanistic explanation and thus settle the long-standing debate of usage of steroid in brain tumor patient edema control. Pharmacological inhibition of GR/GPD1 pathway disrupts metabolic plasticity of BTSCs and prolong animal survival, which is superior to standard chemotherapy. Patient case study shows that GR antagonist mifepristone blocks tumor progression and leads to symptomatic improvement. This study identifies an important mechanism regulating cancer stem cell dormancy and provides a new opportunity for glioblastoma treatment.

Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides.

Procedia PDF Downloads 65
6772 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 94
6771 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers

Authors: Venkat Garigapati

Abstract:

Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.

Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin

Procedia PDF Downloads 72
6770 Correlation between Calpain 1 Expression and Proliferating/Apoptotic Index and Prognostic Factors in Triple Negative Breast Cancer

Authors: Shadia Al-Bahlani, Ruqaya Al-Rashdi, Shadia Al-Sinawi, Maya Al-Bahri

Abstract:

Background: Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and Human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. The role of clapins in pathogenesis and tumor progression has been studied in certain cancer types; however, its definite role is not yet established in breast cancer especially in the TNBC subtype. Objectives: This study aims to measure calpain-1 expression and correlate this measurement with the proliferating/apoptotic index as well with the prognostic factors in TNBC patients’ tissue. Materials and Methods: Thirty nine paraffin blocks from patients diagnosed with TNBC were used to measure the expression of calpain-1 and Ki-67 (proliferating marker) proteins using immunohistochemistry. Apoptosis was assessed morphological and biochemically using conventional Haematoxylin and Eosin (H&E) staining method and terminal deoxynucleotidyl transferase-mediate dUTP nick and labeling (TUNEL) assay respectively. Data was statistically analyzed using Pearson X2 test of association. Results: Calpain-1 content was visualized in the nucleus of the TNBC cells and its expression varied from low to high among the patients tissue. Calpain expression showed no significant correlation with the proliferating/apoptotic index as well with the clinicopathological variables. Apoptotic counts quantified by H&E staining showed significant association with the apoptotic TUNEL assay, validating both approaches. Conclusion: Although calpain-1 expression showed no significant association with the clinical outcome, its variable level of expression might indicate a hidden role in breast cancer tissue. Larger number of samples and different mode of assessments are needed to fully investigate such role. Exploring the involvement of calpain-1 in cancer progression might help in considering it as a biomarker of breast cancer.

Keywords: breast cancer, calpain, apoptosis, prognosis

Procedia PDF Downloads 422
6769 Inhibitory Effects of Crocin from Crocus sativus L. on Cell Proliferation of a Medulloblastoma Human Cell Line

Authors: Kyriaki Hatziagapiou, Eleni Kakouri, Konstantinos Bethanis, Alexandra Nikola, Eleni Koniari, Charalabos Kanakis, Elias Christoforides, George Lambrou, Petros Tarantilis

Abstract:

Medulloblastoma is a highly invasive tumour, as it tends to disseminate throughout the central nervous system early in its course. Despite the high 5-year-survival rate, a significant number of patients demonstrate serious long- or short-term sequelae (e.g., myelosuppression, endocrine dysfunction, cardiotoxicity, neurological deficits and cognitive impairment) and higher mortality rates, unrelated to the initial malignancy itself but rather to the aggressive treatment. A strong rationale exists for the use of Crocus sativus L (saffron) and its bioactive constituents (crocin, crocetin, safranal) as pharmaceutical agents, as they exert significant health-promoting properties. Crocins are water soluble carotenoids. Unlike other carotenoids, crocins are highly water-soluble compounds, with relatively low toxicity as they are not stored in adipose and liver tissues. Crocins have attracted wide attention as promising anti-cancer agents, due to their antioxidant, anti-inflammatory, and immunomodulatory effects, interference with transduction pathways implicated in tumorigenesis, angiogenesis, and metastasis (disruption of mitotic spindle assembly, inhibition of DNA topoisomerases, cell-cycle arrest, apoptosis or cell differentiation) and sensitization of cancer cells to radiotherapy and chemotherapy. The current research aimed to study the potential cytotoxic effect of crocins on TE671 medulloblastoma cell line, which may be useful in the optimization of existing and development of new therapeutic strategies. Crocins were extracted from stigmas of saffron in ultrasonic bath, using petroleum-ether, diethylether and methanol 70%v/v as solvents and the final extract was lyophilized. Identification of crocins according to high-performance liquid chromatography (HPLC) analysis was determined comparing the UV-vis spectra and the retention time (tR) of the peaks with literature data. For the biological assays crocin was diluted to nuclease and protease free water. TE671 cells were incubated with a range of concentrations of crocins (16, 8, 4, 2, 1, 0.5 and 0.25 mg/ml) for 24, 48, 72 and 96 hours. Analysis of cell viability after incubation with crocins was performed with Alamar Blue viability assay. The active ingredient of Alamar Blue, resazurin, is a blue, nontoxic, cell permeable compound virtually nonfluorescent. Upon entering cells, resazurin is reduced to a pink and fluorescent molecule, resorufin. Viable cells continuously convert resazurin to resorufin, generating a quantitative measure of viability. The colour of resorufin was quantified by measuring the absorbance of the solution at 600 nm with a spectrophotometer. HPLC analysis indicated that the most abundant crocins in our extract were trans-crocin-4 and trans-crocin-3. Crocins exerted significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72 and 96 hours versus cells not exposed); as their concentration and time of exposure increased, the reduction of resazurin to resofurin decreased, indicating reduction in cell viability. IC50 values for each time point were calculated ~3.738, 1.725, 0.878 and 0.7566 mg/ml at 24, 48, 72 and 96 hours, respectively. The results of our study could afford the basis of research regarding the use of natural carotenoids as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgements: The research was funded by Fellowships of Excellence for Postgraduate Studies IKY-Siemens Programme.

Keywords: crocetin, crocin, medulloblastoma, saffron

Procedia PDF Downloads 186
6768 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin

Authors: Emma R. Arakelova, Stepan G. Grigoryan, Flora G. Arsenyan, Nelli S. Babayan, Ruzanna M. Grigoryan, Natalia K. Sarkisyan

Abstract:

Novel nanosize zinc oxide composites of doxorubicin obtained by deposition of 180 nm thick zinc oxide film on the drug surface using DC-magnetron sputtering of a zinc target in the form of gels (PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO) were studied for drug delivery applications. The cancer specificity was revealed both in in vitro and in vivo models. The cytotoxicity of the test compounds was analyzed against human cancer (HeLa) and normal (MRC5) cell lines using MTT colorimetric cell viability assay. IC50 values were determined and compared to reveal the cancer specificity of the test samples. The mechanistic study of the most active compound was investigated using Flow cytometry analyzing of the DNA content after PI (propidium iodide) staining. Data were analyzed with Tree Star FlowJo software using cell cycle analysis Dean-Jett-Fox module. The in vivo anticancer activity estimation experiments were carried out on mice with inoculated ascitic Ehrlich’s carcinoma at intraperitoneal introduction of doxorubicin and its zinc oxide compositions. It was shown that the nanosize zinc oxide film deposition on the drug surface leads to the selective anticancer activity of composites at the cellular level with the range of selectivity index (SI) from 4 (Starch+NaCMC+Dox+ZnO) to 200 (PEO(gel)+Dox+ZnO) which is higher than that of free Dox (SI = 56). The significant increase in vivo antitumor activity (by a factor of 2-2.5) and decrease of general toxicity of zinc oxide compositions of doxorubicin in the form of the above mentioned gels compared to free doxorubicin were shown on the model of inoculated Ehrlich's ascitic carcinoma. Mechanistic studies of anticancer activity revealed the cytostatic effect based on the high level of DNA biosynthesis inhibition at considerable low concentrations of zinc oxide compositions of doxorubicin. The results of studies in vitro and in vivo behavior of PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO composites confirm the high potential of the nanosize zinc oxide composites as a vector delivery system for future application in cancer chemotherapy.

Keywords: anticancer activity, cancer specificity, doxorubicin, zinc oxide

Procedia PDF Downloads 383