Search results for: building technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7056

Search results for: building technologies

6936 Developing a Simulation-Based Optimization Framework to Perform Energy Simulation for Indian Buildings

Authors: Sujoy Anirudha Das, Albert Thomas

Abstract:

Building sector is a major consumer of energy globally, and it has corresponding effects to the environment with respect to the carbon emissions. Given the fact that India is expected to add 40-billion square meter of new buildings till 2050, we need frameworks that help in reducing the overall energy consumption in the building sector. Even though several simulation-based frameworks that help in analyzing the building energy consumption are developed globally, in the Indian context, to the best of our knowledge, there is a lack of a comprehensive, yet user-friendly framework to simulate and optimize the effects of various energy influencing factors, specifically for Indian buildings. Therefore, this study is aimed at developing a simulation-based optimization framework to model the energy interactions in different types of Indian buildings by considering the dynamic nature of various energy influencing factors. This comprehensive framework can be used by various building stakeholders to test the energy effects of different factors such as, but not limited to, the various building materials, the orientation, the weather fluctuations, occupancy changes and the type of the building (e.g., office, residential). The results from the case study involving several building types would help us in gaining insights to build new energy-efficient buildings as well as retrofit the existing structures in a more convenient way to consume less energy, exclusively for an Indian scenario.

Keywords: building energy consumption, building energy simulations, energy efficient buildings, optimization framework

Procedia PDF Downloads 138
6935 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 112
6934 Factors Affecting Time Performance in Building Construction Projects

Authors: Ibraheem A. K. Mahameed

Abstract:

The aim of this study is to identify the risks affecting time performance of building construction projects in the West Bank in Palestine from contractors’ viewpoint. 38 risks that might affect time performance of building construction projects were defined through a detailed literature review. These risks have been classified into 6 groups: project, managerial, consultant, financial, external, and construction items. A questionnaire survey was performed to rank the considered risks in terms of severity and frequency. The analysis of the survey indicated that the top five risks affecting time performance of building construction projects in Palestine are: award project to the lowest price, political situation, poor communication and coordination between construction parties, change orders, and financial status of contractor.

Keywords: delay, time performance, construction, building

Procedia PDF Downloads 434
6933 Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index

Authors: S. M. A. Bekkouche, T. Benouaz, M. K. Cherier, M. Hamdani, M. R. Yaiche, N. Benamrane

Abstract:

Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy.

Keywords: multizone model, nodal method, compactness index, specific humidity, temperature

Procedia PDF Downloads 378
6932 Comparison of Steel and Composite Analysis of a Multi-Storey Building

Authors: Çiğdem Avcı Karataş

Abstract:

Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.

Keywords: composite analysis, earthquake, steel, multi-storey building

Procedia PDF Downloads 537
6931 Integrating Building Information Modeling into Facilities Management Operations

Authors: Mojtaba Valinejadshoubi, Azin Shakibabarough, Ashutosh Bagchi

Abstract:

Facilities such as residential buildings, office buildings, and hospitals house large density of occupants. Therefore, a low-cost facility management program (FMP) should be used to provide a satisfactory built environment for these occupants. Facility management (FM) has been recently used in building projects as a critical task. It has been effective in reducing operation and maintenance cost of these facilities. Issues of information integration and visualization capabilities are critical for reducing the complexity and cost of FM. Building information modeling (BIM) can be used as a strong visual modeling tool and database in FM. The main objective of this study is to examine the applicability of BIM in the FM process during a building’s operational phase. For this purpose, a seven-storey office building is modeled Autodesk Revit software. Authors integrated the cloud-based environment using a visual programming tool, Dynamo, for the purpose of having a real-time cloud-based communication between the facility managers and the participants involved in the project. An appropriate and effective integrated data source and visual model such as BIM can reduce a building’s operational and maintenance costs by managing the building life cycle properly.

Keywords: building information modeling, facility management, operational phase, building life cycle

Procedia PDF Downloads 127
6930 The Early Stages of the Standardisation of Finnish Building Sector

Authors: Anu Soikkeli

Abstract:

Early 20th century functionalism aimed at generalising living and rationalising construction, thus laying the foundation for the standardisation of construction components and products. From the 1930s onwards, all measurement and quality instructions for building products, different types of building components, descriptions of working methods complying with advisable building practises, planning, measurement and calculation guidelines, terminology, etc. were called standards. Standardisation was regarded as a necessary prerequisite for the mass production of housing. This article examines the early stages of standardisation in Finland in the 1940s and 1950s, as reflected on the working history of an individual architect, Erkki Koiso-Kanttila (1914-2006). In 1950 Koiso-Kanttila was appointed the Head of Design of the Finnish Association of Architects’ Building Standards Committee, a position which he held until 1958. His main responsibilities were the development of the RT Building Information File and compiling of the files.

Keywords: architecture, post WWII period, reconstruction, standardisation

Procedia PDF Downloads 394
6929 Define Immersive Need Level for Optimal Adoption of Virtual Words with BIM Methodology

Authors: Simone Balin, Cecilia M. Bolognesi, Paolo Borin

Abstract:

In the construction industry, there is a large amount of data and interconnected information. To manage this information effectively, a transition to the immersive digitization of information processes is required. This transition is important to improve knowledge circulation, product quality, production sustainability and user satisfaction. However, there is currently a lack of a common definition of immersion in the construction industry, leading to misunderstandings and limiting the use of advanced immersive technologies. Furthermore, the lack of guidelines and a common vocabulary causes interested actors to abandon the virtual world after the first collaborative steps. This research aims to define the optimal use of immersive technologies in the AEC sector, particularly for collaborative processes based on the BIM methodology. Additionally, the research focuses on creating classes and levels to structure and define guidelines and a vocabulary for the use of the " Immersive Need Level." This concept, matured by recent technological advancements, aims to enable a broader application of state-of-the-art immersive technologies, avoiding misunderstandings, redundancies, or paradoxes. While the concept of "Informational Need Level" has been well clarified with the recent UNI EN 17412-1:2021 standard, when it comes to immersion, current regulations and literature only provide some hints about the technology and related equipment, leaving the procedural approach and the user's free interpretation completely unexplored. Therefore, once the necessary knowledge and information are acquired (Informational Need Level), it is possible to transition to an Immersive Need Level that involves the practical application of the acquired knowledge, exploring scenarios and solutions in a more thorough and detailed manner, with user involvement, via different immersion scales, in the design, construction or management process of a building or infrastructure. The need for information constitutes the basis for acquiring relevant knowledge and information, while the immersive need can manifest itself later, once a solid information base has been solidified, using the senses and developing immersive awareness. This new approach could solve the problem of inertia among AEC industry players in adopting and experimenting with new immersive technologies, expanding collaborative iterations and the range of available options.

Keywords: AECindustry, immersive technology (IMT), virtual reality, augmented reality, building information modeling (BIM), decision making, collaborative process, information need level, immersive level of need

Procedia PDF Downloads 52
6928 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture

Authors: Zhenzhen Zhang

Abstract:

As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.

Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy

Procedia PDF Downloads 258
6927 Application of Proper Foundation in Building Construction

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

Foundation is popularly defined as the lowest load-bearing part of a building, typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice, which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably, resulting to misuse or abuse of the building materials man, power, and some times altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of foundation, even building settlement and stability. In addition to those, it will improve aesthetics, maintain cost effectiveness both construction cost and maintenance cost. Finally it will ensure the safety of the building and its inhabitants. At the end of this research work we will be able to differentiate the various foundation types and there proper application in the design and construction of buildings.

Keywords: foundation, application, stability, aesthetics

Procedia PDF Downloads 42
6926 Smartphones in the (Class) Room in Pandemic and Post-pandemic Times: a Study in an Ecological Perspective

Authors: Junia Braga, Antonio carlos Martins, Marcos Racilan

Abstract:

Drawing on the ecological approach, this paper reports a qualitative study that aims to understand how mobile technologies were integrated during the pandemic in the context of language teaching and the use of these technologies in post-pandemic times. Seventy-six teachers answered a questionnaire about their experiences. The findings show how the network with peers scaffolded this experience and played a crucial role in their appropriation of those technologies. They also suggest that this network may have contributed to the normalisation of digital technology use.

Keywords: ecological perspective, language teaching, mobile technologies, teacher education

Procedia PDF Downloads 71
6925 Scenarios of Digitalization and Energy Efficiency in the Building Sector in Brazil: 2050 Horizon

Authors: Maria Fatima Almeida, Rodrigo Calili, George Soares, João Krause, Myrthes Marcele Dos Santos, Anna Carolina Suzano E. Silva, Marcos Alexandre Da

Abstract:

In Brazil, the building sector accounts for 1/6 of energy consumption and 50% of electricity consumption. A complex sector with several driving actors plays an essential role in the country's economy. Currently, the digitalization readiness in this sector is still low, mainly due to the high investment costs and the difficulty of estimating the benefits of digital technologies in buildings. Nevertheless, the potential contribution of digitalization for increasing energy efficiency in the building sector in Brazil has been pointed out as relevant in the political and sectoral contexts, both in the medium and long-term horizons. To contribute to the debate on the possible evolving trajectories of digitalization in the building sector in Brazil and to subsidize the formulation or revision of current public policies and managerial decisions, three future scenarios were created to anticipate the potential energy efficiency in the building sector in Brazil due to digitalization by 2050. This work aims to present these scenarios as a basis to foresight the potential energy efficiency in this sector, according to different digitalization paces - slow, moderate, or fast in the 2050 horizon. A methodological approach was proposed to create alternative prospective scenarios, combining the Global Business Network (GBN) and the Laboratory for Investigation in Prospective Strategy and Organisation (LIPSOR) methods. This approach consists of seven steps: (i) definition of the question to be foresighted and time horizon to be considered (2050); (ii) definition and classification of a set of key variables, using the prospective structural analysis; (iii) identification of the main actors with an active role in the digital and energy spheres; (iv) characterization of the current situation (2021) and identification of main uncertainties that were considered critical in the development of alternative future scenarios; (v) scanning possible futures using morphological analysis; (vi) selection and description of the most likely scenarios; (vii) foresighting the potential energy efficiency in each of the three scenarios, namely slow digitalization; moderate digitalization, and fast digitalization. Each scenario begins with a core logic and then encompasses potentially related elements, including potential energy efficiency. Then, the first scenario refers to digitalization at a slow pace, with induction by the government limited to public buildings. In the second scenario, digitalization is implemented at a moderate pace, induced by the government in public, commercial, and service buildings, through regulation integrating digitalization and energy efficiency mechanisms. Finally, in the third scenario, digitalization in the building sector is implemented at a fast pace in the country and is strongly induced by the government, but with broad participation of private investments and accelerated adoption of digital technologies. As a result of the slow pace of digitalization in the sector, the potential for energy efficiency stands at levels below 10% of the total of 161TWh by 2050. In the moderate digitalization scenario, the potential reaches 20 to 30% of the total 161TWh by 2050. Furthermore, in the rapid digitalization scenario, it will reach 30 to 40% of the total 161TWh by 2050.

Keywords: building digitalization, energy efficiency, scenario building, prospective structural analysis, morphological analysis

Procedia PDF Downloads 84
6924 The Environmental Impact of Wireless Technologies in Nigeria: An Overview of the IoT and 5G Network

Authors: Powei Happiness Kerry

Abstract:

Introducing wireless technologies in Nigeria have improved the quality of lives of Nigerians, however, not everyone sees it in that light. The paper on the environmental impact of wireless technologies in Nigeria summarizes the scholarly views on the impact of wireless technologies on the environment, beaming its searchlight on 5G and internet of things in Nigeria while also exploring the theory of the Technology Acceptance Model (TAM). The study used a qualitative research method to gather important data from relevant sources and contextually draws inference from the derived data. The study concludes that the Federal Government of Nigeria, before agreeing to any latest development in the world of wireless technologies, should weigh the implications and deliberate extensively with all stalk holders putting into consideration the confirmation it will receive from the National Assembly.  

Keywords: Internet of Things, radiofrequency, electromagnetic radiation, information and communications technology, ICT, 5G

Procedia PDF Downloads 102
6923 Management of Urban Watering: A Study of Appliance of Technologies and Legislation in Goiania, Brazil

Authors: Vinicius Marzall, Jussanã Milograna

Abstract:

The urban drainwatering remains a major challenge for most of the Brazilian cities. Not so different of the most part, Goiania, a state capital located in Midwest of the country has few legislations about the subject matter and only one registered solution of compensative techniques for drainwater. This paper clam to show some solutions which are adopted in other Brazilian cities with consolidated legislation, suggesting technics about detention tanks in a building sit. This study analyzed and compared the legislation of Curitiba, Porto Alegre e Sao Paulo, with the actual legislation and politics of Goiania. After this, were created models with adopted data for dimensioning the size of detention tanks using the envelope curve method considering synthetic series for intense precipitations and building sits between 250 m² and 600 m², with an impermeabilization tax of 50%. The results showed great differences between the legislation of Goiania and the documentation of the others cities analyzed, like the number of techniques for drainwatering applied to the reality of the cities, educational actions to awareness the population about care the water courses and political management by having a specified funds for drainwater subjects, for example. Besides, the use of detention tank showed itself practicable, have seen that the occupation of the tank is minor than 3% of the building sit, whatever the size of the terrain, granting the exit flow to pre-occupational taxes in extreme rainfall events. Also, was developed a linear equation to measure the detention tank based in the size of the building sit in Goiania, making simpler the calculation and implementation for non-specialized people.

Keywords: clean technology, legislation, rainwater management, urban drainwater

Procedia PDF Downloads 132
6922 Damage Assessment and Repair for Older Brick Buildings

Authors: Tim D. Sass

Abstract:

The experience of engineers and architects practicing today is typically limited to current building code requirements and modern construction methods and materials. However, many cities have a mix of new and old buildings with many buildings constructed over one hundred years ago when building codes and construction methods were much different. When a brick building sustains damage, a structural engineer is often hired to determine the cause of damage as well as determine the necessary repairs. Forensic studies of dozens of brick buildings shows an appreciation of historical building methods and materials is needed to correctly identify the cause of damage and design an appropriate repair. Damage on an older, brick building can be mistakenly attributed to storms or seismic events when the real source of the damage is deficient original construction. Assessing and remediating damaged brickwork on older brick buildings requires an understanding of the original construction, an understanding of older repair methods, and, an understanding of current building code requirements.

Keywords: brick, damage, deterioration, facade

Procedia PDF Downloads 200
6921 Comparative Spatial Analysis of a Re-Arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: architecture, hospital building, space syntax, strengthening

Procedia PDF Downloads 492
6920 A Case Study on Post-Occupancy Evaluation of User Satisfaction in Higher Educational Buildings

Authors: Yuanhong Zhao, Qingping Yang, Andrew Fox, Tao Zhang

Abstract:

Post-occupancy evaluation (POE) is a systematic approach to assess the actual building performance after the building has been occupied for some time. In this paper, a structured POE assessment was conducted using the building use survey (BUS) methodology in two higher educational buildings in the United Kingdom. This study aims to help close the building performance gap, provide optimized building operation suggestions, and to improve occupants’ satisfaction level. In this research, the questionnaire survey investigated the influences of environmental factors on user satisfaction from the main aspects of building overall design, thermal comfort, perceived control, indoor environment quality for noise, lighting, ventilation, and other non-environmental factors, such as the background information about age, sex, time in buildings, workgroup size, and so on. The results indicate that the occupant satisfaction level with the main aspects of building overall design, indoor environment quality, and thermal comfort in summer and winter on both two buildings, which is lower than the benchmark data. The feedback of this POE assessment has been reported to the building management team to allow managers to develop high-performance building operation plans. Finally, this research provided improvement suggestions to the building operation system to narrow down the performance gap and improve the user work experience satisfaction and productivity level.

Keywords: building performance assessment systems, higher educational buildings, post-occupancy evaluation, user satisfaction

Procedia PDF Downloads 122
6919 Biomimetic Building Envelopes to Reduce Energy Consumption in Hot and Dry Climates

Authors: Aswitha Bachala

Abstract:

Energy shortage became a worldwide major problem since the 1970s, due to high energy consumption. Buildings are the primary energy users which consume 40% of global energy consumption, in which, 40%-50% of building’s energy usage is consumed due to its envelope. In hot and dry climates, 40% of energy is consumed only for cooling purpose, which implies major portion of energy savings can be worked through the envelopes. Biomimicry can be one solution for extracting efficient thermoregulation strategies found in nature. This paper aims to identify different biomimetic building envelopes which shall offer a higher potential to reduce energy consumption in hot and dry climates. It focuses on investigating the scope for reducing energy consumption through biomimetic approach in terms of envelopes. An in-depth research on different biomimetic building envelopes will be presented and analyzed in terms of heat absorption, in addition to, the impact it had on reducing the buildings energy consumption. This helps to understand feasible biomimetic building envelopes to mitigate heat absorption in hot and dry climates.

Keywords: biomimicry, building envelopes, energy consumption, hot and dry climate

Procedia PDF Downloads 187
6918 The Impact of Artificial Intelligence on Digital Construction

Authors: Omil Nady Mahrous Maximous

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 14
6917 A Paradigm Shift in Energy Policy and Use: Exergy and Hybrid Renewable Energy Technologies

Authors: Adavbiele Airewe Stephen

Abstract:

Sustainable energy use is exploiting energy resources within acceptable levels of global resource depletion without destroying the ecological balance of an area. In the context of sustainability, the rush to quell the energy crisis of the fossil fuels of the 1970's by embarking on nuclear energy technology has now been seen as a disaster. In the circumstance, action (policy) suggested in this study to avoid future occurrence is exergy maximization/entropy generation minimization and the use is renewable energy technologies that are hybrid based. Thirty-two (32) selected hybrid renewable energy technologies were assessed with respect to their energetic efficiencies and entropy generation. The results indicated that determining which of the hybrid technologies is the most efficient process and sustainable is a matter of defining efficiency and knowing which of them possesses the minimum entropy generation.

Keywords: entropy, exergy, hybrid renewable energy technologies, sustainability

Procedia PDF Downloads 409
6916 Evaluation of the Sustainability of Greek Vernacular Architecture in Different Climate Zones: Architectural Typology and Building Physics

Authors: Christina Kalogirou

Abstract:

Investigating the integration of bioclimatic design into vernacular architecture could lead to interesting results regarding the preservation of cultural heritage while enhancing the energy efficiency of historic buildings. Furthermore, these recognized principles and systems of bioclimatic design in vernacular settlements could be applied to modern architecture and thus to new buildings in such areas. This study introduces an approach to categorizing distinct technologies and design principles of bioclimatic design based on a thoughtful approach to various climatic zones and environment in Greece (mountainous areas, islands and lowlands). For this purpose, various types of dwellings are evaluated for their response to climate, regarding the layout of the buildings (orientation, floor plans’ shape, semi-open spaces), the site planning, the openings (size, position, protection), the building envelope (walls: construction materials-thickness, roof construction detailing) and the migratory living pattern according to seasonal needs. As a result, various passive design principles (that could be adapted to current architectural practice in such areas, in order to optimize the relationship between site, building, climate and energy efficiency) are proposed.

Keywords: bioclimatic design, buildings physics, climatic zones, energy efficiency, vernacular architecture

Procedia PDF Downloads 353
6915 Future of Electric Power Generation Technologies: Environmental and Economic Comparison

Authors: Abdulrahman A. Bahaddad, Mohammed Beshir

Abstract:

The objective of this paper is to demonstrate and describe eight different types of power generation technologies and to understand the history and future trends of each technology. In addition, a comparative analysis between these technologies will be presented with respect to their cost analysis and associated performance.

Keywords: conventional power generation, economic analysis, environmental impact, renewable energy power generation

Procedia PDF Downloads 98
6914 Toward Sustainable Building Design in Hot and Arid Climate with Reference to Riyadh City, Saudi Arabia

Authors: M. Alwetaishi

Abstract:

One of the most common and traditional strategies in architecture is to design buildings passively. This is a way to ensure low building energy reliance with respect to specific micro-building locations. There are so many ways where buildings can be designed passively, some of which are applying thermal insulation, thermal mass, courtyard and glazing to wall ratio. This research investigates the impact of each of these aspects with respect to the hot and dry climate of the capital of Riyadh. Thermal Analysis Simulation (TAS) will be utilized which is powered by Environmental Design Simulation Limited company (EDSL). It is considered as one of the most powerful tools to predict energy performance in buildings. There are three primary building designs and methods which are using courtyard, thermal mass and thermal insulation. The same building size and fabrication properties have been applied to all designs. Riyadh city which is the capital of the country was taken as a case study of the research. The research has taken into account various zone directions within the building as it has a large contribution to indoor energy and thermal performance. It is revealed that it is possible to achieve nearly zero carbon building in the hot and dry region in winter with minimum reliance on energy loads for building zones facing south, west and east. Moreover, using courtyard is more beneficial than applying construction materials into building envelope. Glazing to wall ratio is recommended to be 10% and not exceeding 30% in all directions in hot and arid regions.

Keywords: sustainable buildings, hot and arid climates, passive building design, Saudi Arabia

Procedia PDF Downloads 128
6913 Factors Influencing the Use of Green Building Practices in the South African Residential Apartment Construction

Authors: Mongezi Nene, Emma Ayesu-Koranteng, Christopher Amoah, Ayo Adeniran

Abstract:

Although its use has been criticized over the years as being unencouraging, the green building concept is quickly overtaking other concepts, particularly in the construction of commercial properties. The goal of the study is to identify the variables influencing the use of green building practices when developing residential structures. A qualitative methodology, using interviews with semi-structured open-ended questions to 35 property practitioners operating residential apartments in Bloemfontein, South Africa, was used to collect primary data which was analysed using thematic content analysis. The findings show that while respondents have a good understanding of green building principles, they are not being used in the construction of residential buildings in South Africa due to issues with green building approval procedures, the potential for tenant rent increases, the cost of materials, technical issues, contractual issues, and a lack of awareness, among others. This paper recommends among others an urgent need to implement measures by stakeholders towards enhancing the adoption of green building concepts in the construction of residential buildings as well as incentivising its construction through lowered property rates.

Keywords: green building, residential apartments, construction, South Africa

Procedia PDF Downloads 56
6912 Internet of Things for Smart Dedicated Outdoor Air System in Buildings

Authors: Dararat Tongdee, Surapong Chirarattananon, Somchai Maneewan, Chantana Punlek

Abstract:

Recently, the Internet of Things (IoT) is the important technology that connects devices to the network and people can access real-time communication. This technology is used to report, collect, and analyze the big data for achieving a purpose. For a smart building, there are many IoT technologies that enable management and building operators to improve occupant thermal comfort, indoor air quality, and building energy efficiency. In this research, we propose monitoring and controlling performance of a smart dedicated outdoor air system (SDOAS) based on IoT platform. The SDOAS was specifically designed with the desiccant unit and thermoelectric module. The designed system was intended to monitor, notify, and control indoor environmental factors such as temperature, humidity, and carbon dioxide (CO₂) level. The SDOAS was tested under the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 62.2) and indoor air quality standard. The system will notify the user by Blynk notification when the status of the building is uncomfortable or tolerable limits are reached according to the conditions that were set. The user can then control the system via a Blynk application on a smartphone. The experimental result indicates that the temperature and humidity of indoor fresh air in the comfort zone are approximately 26 degree Celsius and 58% respectively. Furthermore, the CO₂ level was controlled lower than 1000 ppm by indoor air quality standard condition. Therefore, the proposed system can efficiently work and be easy to use for buildings.

Keywords: internet of things, indoor air quality, smart dedicated outdoor air system, thermal comfort

Procedia PDF Downloads 171
6911 Using Building Information Modeling in Green Building Design and Performance Optimization

Authors: Moataz M. Hamed, Khalid S. M. Al Hagla, Zeyad El Sayad

Abstract:

Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome.

Keywords: BIM, building performance analysis, BIM-based sustainable analysis, green building design

Procedia PDF Downloads 309
6910 High-Production Laser and Plasma Welding Technologies for High-Speed Vessels Production

Authors: V. M. Levshakov, N. A. Steshenkova, N. A. Nosyrev

Abstract:

Application of hulls processing technologies, based on high-concentrated energy sources (laser and plasma technologies), allow improve shipbuilding production. It is typical for high-speed vessels construction using steel and aluminum alloys with high precision hulls required. Report describes high-performance technologies for plasma welding (using direct current of reversed polarity), laser, and hybrid laser-arc welding of hulls structures developed by JSC “SSTC”.

Keywords: flat sections, hybrid laser-arc welding, plasma welding, plasmatron

Procedia PDF Downloads 402
6909 A Study of Carbon Emissions during Building Construction

Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli

Abstract:

In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.

Keywords: building construction phase, carbon emissions assessment, building life cycle

Procedia PDF Downloads 716
6908 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: big data, big data analytics, Hadoop, cloud

Procedia PDF Downloads 279
6907 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects

Authors: Preeda Sansakorn, Min An

Abstract:

In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.

Keywords: safety risk assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects

Procedia PDF Downloads 456