Search results for: beam/column frame
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2437

Search results for: beam/column frame

2137 Behavior of Square Reinforced-Concrete Columns Strenghtened with Carbon Fiber Reinforced Polymers (CFRP) under Concentric Loading

Authors: Dana Abed, Mu`Tasim Abdel-Jaber, Nasim Shatarat

Abstract:

This study aims at investigating the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymer (CFRP) wrapped square reinforced concrete short columns. Three sets of columns were built for this purpose: 200x200x1200 mm; 250x250x1500 mm and 300x300x1800 mm. Each set includes a control column and a strengthened column with one layer of CFRP sheets. All columns were tested under the effect of pure axial compression load. The results of the study show that using CFRP sheets resulted in capacity enhancement of 37%, 32% and 27% for the 200×200, 250×250, and 300×300 mm, respectively. The results of the experimental program demonstrated that the percentage of improvement in strength decreased by increasing the cross-sectional size of the column.

Keywords: CFRP, columns, concentric loading, cross-sectional

Procedia PDF Downloads 260
2136 Free Vibration Analysis of Symmetric Sandwich Beams

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 447
2135 E-Bike FE Model Analysis: Connection Stiffness of Elements with Different DOFs

Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

Finite Element (FE) model of simplified e-bike structure was generated by main frame with two tiers, which consisted of pipe, mass, beam, and shell elements (pipe 289, beam188, shell 181, shell 281, combin14, link11, mass21). These elements would be introduced and demonstrated using mathematical formulas. Based on coupling theory, constrain equations was proposed. Exporting all the parameters obtained from theory part, the connection stiffness matrix of the whole e-bike structure between each of these elements was detected.

Keywords: coupling theory, stiffness matrix, e-bike, finite element model

Procedia PDF Downloads 351
2134 Bond Strength of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed Sarhan Sarhan

Abstract:

This paper presents an experimental study of the bond behaviour of confined concrete beams reinforced with a chequer steel plate or a deformed steel bar by using the beam-bending pullout test. A total of three beams of 225 mm width, 300 mm height, and 600 mm length were cast and tested. All the beams had the same details of compression reinforcement and stirrups; two plain steel bars of 10 mm diameter (R10) were used for the compression reinforcement, and plain steel bars (R10) at a distance of 80 mm centre to centre were used for the stirrups. The first beam was reinforced with a deformed steel bar while the remaining beams were reinforced with horizontal or vertical chequer steel plates. The results showed no significant difference in the bond force between the beams reinforced with a deformed steel bar or a horizontal steel plate. The beam reinforced with a vertical steel plate considerably presented a bond force higher than the beam reinforced with a horizontal steel plate.

Keywords: bond, pullout, reinforced concrete, steel plate

Procedia PDF Downloads 106
2133 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 97
2132 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju

Abstract:

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Keywords: bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns

Procedia PDF Downloads 334
2131 Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam

Authors: Mohammad Mahdi Kioumarsi

Abstract:

In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp⁄Lr) and the ratio of the localised cross section reduction to the original area of the rebar (Apit⁄A0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure.

Keywords: localised corrosion, concrete beam, sensitivity analyses, ultimate capacity

Procedia PDF Downloads 233
2130 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method

Authors: Anthony P. Anies, Jose C. Muñoz

Abstract:

A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.

Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK

Procedia PDF Downloads 161
2129 Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking

Authors: Anupam Saxena, Achin Agrawal, Rishabh Shukla, S. Mandal

Abstract:

It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable.

Keywords: delamination, elasticity, FEA, flexural strength, modal frequency, RC beam

Procedia PDF Downloads 391
2128 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 148
2127 Design of a Compact Herriott Cell for Heat Flux Measurement Applications

Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz

Abstract:

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

Keywords: heat flux, Herriott cell, optical beam deflection, thermal conductivity

Procedia PDF Downloads 620
2126 Behaviour of RC Columns at Elevated Temperatures by NDT Techniques

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Reinforced concrete column is an important structural element in a building. Concrete usually performs well in building fires. However, when it is subjected to prolonged fire exposure or unusually high temperatures, and then it will suffer significant distress. Because concrete pre-fire compressive strength generally exceeds design requirements, therefore an average strength reduction can be tolerated. However high temperature reduces the compressive strength of concrete so much that the concrete retains no useful structural strength. Therefore the residual strength and its performance of structure can be assed by NDT testing. In this paper, rebound hammer test and the ultrasonic pulse velocity (UPV) are used to evaluate the residual compressive strength and material integrity of post-fire-curing concrete subjected to elevated temperatures. Also considering the large availability of fly ash in most of the countries, an attempt was made to study the effect of high volume fly ash concrete exposed to elevated temperatures. 32 RC column specimens were made with a M20 grade concrete mix. Out of 32 column specimens 16 column specimens were made with OPC concrete and other 16 column specimens were made with HVFA concrete. All specimens having similar cross-section details. Columns were exposed to fire for temperatures from 100oC to 800o C with increments of 100o C for duration of 3 hours. Then the specimens allowed cooling to room temperature by two methods natural air cooling method and immediate water quenching method. All the specimens were tested identically, for the compressive strengths and material integrity by rebound hammer and ultrasonic pulse velocity meter respectively for study. These two tests were carried out on preheating and post heating of the column specimens. The percentage variation of compressive strengths of RCC columns with the increase in temperature has been studied and compared the results for both OPC and HVFA concretes. Physical observations of the heated columns were observed.

Keywords: HVFA concrete, NDT testing, residual strength

Procedia PDF Downloads 364
2125 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates

Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria

Abstract:

An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.

Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model

Procedia PDF Downloads 86
2124 Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation

Authors: Isao Tomita

Abstract:

We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via χ(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only χ(2)-nonlinearity, where sum-frequency generation in the χ(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device.

Keywords: cavity, periodically-poled LiNbO₃, sum-frequency generation, third-harmonic generation

Procedia PDF Downloads 237
2123 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation

Authors: Somnath Karmakar, S. Chakraverty

Abstract:

This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.

Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam

Procedia PDF Downloads 95
2122 Tapered Double Cantilever Beam: Evaluation of the Test Set-up for Self-Healing Polymers

Authors: Eleni Tsangouri, Xander Hillewaere, David Garoz Gómez, Dimitrios Aggelis, Filip Du Prez, Danny Van Hemelrijck

Abstract:

Tapered Double Cantilever Beam (TDCB) is the most commonly used test set-up to evaluate the self-healing feature of thermoset polymers autonomously activated in the presence of crack. TDCB is a modification of the established fracture mechanics set-up of Double Cantilever Beam and is designed to provide constant strain energy release rate with crack length under stable load evolution (mode-I). In this study, the damage of virgin and autonomously healed TDCB polymer samples is evaluated considering the load-crack opening diagram, the strain maps provided by Digital Image Correlation technique and the fractography maps given by optical microscopy. It is shown that the pre-crack introduced prior to testing (razor blade tapping), the loading rate and the length of the side groove are the features that dominate the crack propagation and lead to inconstant fracture energy release rate.

Keywords: polymers, autonomous healing, fracture, tapered double cantilever beam

Procedia PDF Downloads 329
2121 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 400
2120 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs

Authors: Navneet Kaur, Amarpreet Singh

Abstract:

In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.

Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network

Procedia PDF Downloads 322
2119 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 387
2118 Key Frame Based Video Summarization via Dependency Optimization

Authors: Janya Sainui

Abstract:

As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.

Keywords: video summarization, key frame extraction, dependency measure, quadratic mutual information

Procedia PDF Downloads 247
2117 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: wind fragility, glass window, high rise building, wind disaster

Procedia PDF Downloads 237
2116 Experimental Modal Analysis of a Suspended Composite Beam

Authors: First A. Lahmar Lahbib, Second B. Abdeldjebar Rabiâ, Third C. Moudden B, forth D. Missoum L

Abstract:

Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests.

Keywords: beam, characterization, composite, elasticity modulus, vibration.

Procedia PDF Downloads 441
2115 Performance Evaluation of Composite Beam under Uniform Corrosion

Authors: Ririt Aprilin Sumarsono

Abstract:

Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.

Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion

Procedia PDF Downloads 256
2114 Bio-Surfactant Production and Its Application in Microbial EOR

Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi

Abstract:

There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.

Keywords: bio-surfactant, bacteria, interfacial tension, sand column

Procedia PDF Downloads 382
2113 Free Vibration Analysis of Pinned-Pinned and Clamped-Clamped Equal Strength Columns under Self-Weight and Tip Force Using Differential Quadrature Method

Authors: F. Waffo Tchuimmo, G. S. Kwandio Dongoua, C. U. Yves Mbono Samba, O. Dafounansou, L. Nana

Abstract:

The strength criterion is an important condition of great interest to guarantee the stability of the structural elements. The present work is based on the study of the free vibration of Euler’s Bernoulli column of equal strength in compression while considering its own weight and the axial load in compression and tension subjected to symmetrical boundary conditions. We use the differential quadrature method to investigate the first fifth naturals frequencies parameters of the column according to the different forms of geometrical sections. The results of this work give help in making a judicious choice of type of cross-section and a better boundary condition to guarantee good stability of this type of column in civil constructions.

Keywords: free vibration, equal strength, self-weight, tip force, differential quadrature method

Procedia PDF Downloads 94
2112 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

Authors: Luen Chow Chan

Abstract:

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Keywords: bike frame sizes, cadence rate, pedaling power, seat height

Procedia PDF Downloads 99
2111 Evaluation of Response Modification Factors in Moment Resisting Frame Buildings Considering Soil Structure Interaction

Authors: K. Farheen, A. Munir

Abstract:

Seismic response of the multi-storey buildings is created by the interaction of both the structure and underlying soil medium. The seismic design philosophy is incorporated using response modification factor 'R'. Current code based values of 'R' factor does not reflect the SSI problem as it is based on fixed base condition. In this study, the modified values of 'R' factor for moment resisting frame (MRF) considering SSI are evaluated. The response of structure with and without SSI has been compared using equivalent linear static and nonlinear static pushover analyses for 10-storied moment resisting frame building. The building is located in seismic zone 2B situated on different soils with shear wave velocity (Vₛ) of 300m/sec (SD) and 1200m/s (SB). Code based 'R' factor value for building frame system has been taken as 5.5. Soil medium is modelled using identical but mutually independent horizontal and vertical springs. It was found that the modified 'R' factor values have been decreased by 47% and 43% for soil SD and SB respectively as compared to that of code based 'R' factor.

Keywords: buildings, SSI, shear wave velocity, R factor

Procedia PDF Downloads 182
2110 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers

Authors: Naohiro Nakamura

Abstract:

Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.

Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper

Procedia PDF Downloads 162
2109 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections

Authors: Musa H. Arslan

Abstract:

Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.

Keywords: anchor dowel, concrete, damage, reinforced concrete, shear wall, frame

Procedia PDF Downloads 342
2108 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force

Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak

Abstract:

In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.

Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity

Procedia PDF Downloads 215