Search results for: automotive shredder residue
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 791

Search results for: automotive shredder residue

731 Design of Functional Safe Motor Control Systems in Automotive Applications

Authors: Jae-Woo Kim, Kyung-Jung Lee, Hyun-Sik Ahn

Abstract:

This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism.

Keywords: AUTOSAR, MDPS, Simulink, software component

Procedia PDF Downloads 385
730 A Review on Applications of Nanotechnology in Automotive Industry

Authors: Akshata S. Malani, Anagha D. Chaudhari, Rajeshkumar U. Sambhe

Abstract:

Nanotechnology in pristine sense refers to building of structures at atomic and molecular scale. Meticulously nanotechnology encompasses the nanomaterials with atleast one dimension size ranging from 1 to 100 nanometres.Unlike the literal meaning of its name, nanotechnology is a massive concept beyond imagination. This paper predominantly deals with relevance of nanotechnology in automotive industries. New generation of automotives looks at nanotechnology as an emerging trend of manufacturing revolution. Intricate shapes can be made out of fairly inexpensive raw materials instead of conventional fabrication process. Though the current era have enough technology to face competition, nanotechnology can give futuristic implications to pick up the modern pace. Nanotechnology intends to bridge the gap between automotives with superior technical performance and their cost fluctuation. Preliminarily, it is an area of great scientific interest and a major shaper of many new technologies. Nanotechnology can be an ideal building block for automotive industries, under constant evolution offering a very wide scope of activity. It possesses huge potential and is still in the embryonic form of research and development.

Keywords: nanotechnology, nanomaterials, manufacturing, automotive industry

Procedia PDF Downloads 425
729 Novel Scratch Resistant Self-Healing Automotive Clearcoats Using Hyperbranched Polymers and POSS Nanostructures

Authors: H.Yari, M. Mohseni, Z. Ranjbar

Abstract:

In this work a typical automotive clearcoat is modified with a combination of hyperbranched polymer (HBP) and polyhedral oligomeric silsesquioxane (POSS) nanostructures to simultaneously enhance the scratch resistance and healing ability of the resulting films. Micro-scratch and healing data revealed that these goals were achieved at high loadings of modifiers. Enhanced scratch resistance was attributed to the improved elastic recovery of the clearcoats in presence of modifiers. In addition, improved healing performance due to the partial replacement of covalent cross-links with physical ones resulted from the unique globular highly branched structure of HBP and POSS macromolecules.

Keywords: automotive clearcoat, POSS building blocks scratch resistance, self-healing

Procedia PDF Downloads 361
728 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 90
727 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 266
726 A Review on the Outlook of the Circular Economy in the Automotive Industry

Authors: A. Buruzs, A. Torma

Abstract:

The relationship of the automotive industry with raw material supply is a major challenge and presents obstacles. Automobiles are ones of the most complex products using a large variety of materials. Safety, eco-friendliness and comfort requirements, physical, chemical and economic limitations set the framework in which this industry continuously optimizes the efficient and responsible use of resources. The concept of circular economy covers the issues of waste generation, resource scarcity and economic advantages. However, circularity is already known for the automobile industry – several efforts are done to foster material reuse, product remanufacturing and recycling. The aim of this study is to give an overview on how the producers comply with the growing demands on one hand, and gain efficiency and increase profitability on the other hand from circular economy.

Keywords: automotive industry, circular economy, international requirements, natural resources

Procedia PDF Downloads 290
725 A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution

Authors: Waroton Paisuwan, Mongkol Sukwattanasinitt, Mamoru Tobisu, Anawat Ajavakom

Abstract:

Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+.

Keywords: Gold(III) ion detection, Fluorescent sensor, Fluorescence quenching, Dihydropyridine, Gold nanoparticles (AuNPs)

Procedia PDF Downloads 42
724 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 364
723 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia

Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha

Abstract:

In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.

Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping

Procedia PDF Downloads 304
722 Topology and Shape Optimization of Macpherson Control Arm under Fatigue Loading

Authors: Abolfazl Hosseinpour, Javad Marzbanrad

Abstract:

In this research, the topology and shape optimization of a Macpherson control arm has been accomplished to achieve lighter weight. Present automotive market demands low cost and light weight component to meet the need of fuel efficient and cost effective vehicle. This in turn gives the rise to more effective use of materials for automotive parts which can reduce the mass of vehicle. Since automotive components are under dynamic loads which cause fatigue damage, considering fatigue criteria seems to be essential in designing automotive components. At first, in order to create severe loading condition for control arm, some rough roads are generated through power spectral density. Then, the most critical loading conditions are obtained through multibody dynamics analysis of a full vehicle model. Then, the topology optimization is performed based on fatigue life criterion using HyperMesh software, which resulted to 50 percent mass reduction. In the next step a CAD model is created using CATIA software and shape optimization is performed to achieve accurate dimensions with less mass.

Keywords: topology optimization, shape optimization, fatigue life, MacPherson control arm

Procedia PDF Downloads 289
721 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 152
720 Innovation Management Strategy towards the Detroit of Asia

Authors: Jarunee Wonglimpiyarat

Abstract:

This paper explores the innovation management strategy of Thailand in moving towards the Detroit of Asia. The study analyses Thailand’s automotive cluster based on Porter’s Diamond Model and national innovation system (NIS) framework. A qualitative methodology was carried out, using semi-structured interviews with the players in the Thai automotive industry. Thailand took a different NIS approach by pursuing an Original Equipment Manufacture (OEM) strategy to attract foreign investments in building its automotive cluster, a different path from other Asian countries that competed with Own Brand Manufacture (OBM) strategies. The findings provide useful lessons for other newly industrialized countries (NICs) in adopting the cluster policies to move up the technological ladders.

Keywords: innovation management strategy, national innovation system (NIS), Detroit of Asia, original equipment manufacturer (OEM)

Procedia PDF Downloads 318
719 Effect of Variety and Fibre Type on Functional and organoleptic Properties of Plantain Flour Intended for Food "Fufu"

Authors: C. C. Okafor

Abstract:

The effect of different varieties of plantain (Horn, false horn and French) and fibre types (soy bean residue, cassava sievette and rice bran) on functional and organoleptic properties of plantain-based flour was assessed. Horn, false horn french were processed by washing, peeling with knife, slicing into 3mm thickness and steam blanched at 80℃ for 5minutes, oven dried at 65℃ for 48 hours and milled into flours with attrition mill, sieved with 60 mesh sieve, separately. Fibre sources were processed, milled and fractionated into 60, 40 & 20 mesh sizes. Both flours were blended as 80:20, 70:30 and 60:40. Results obtained indicated that water absorption capacity is highest (2.68) in French plantain variety irrespective of the fibre type used. And in all variety tested the swelling capacity is highest (2.93) when the plantain flour is blended with soy residue (SR) and lowest (1.25) when blended with rice brain (RB). The results show that there is significant variety and fibre type interaction effect at (P < : 0.05). Again the results showed that texture mold ability and overall acceptability were best (7.00) when soy residue was used where as addition of rice bran into plantain flour resulted in fufu with poor texture. This trend was observed in all the verities of plantain tested and in all of the particle size of flour. Using cassava serviette also yield fufu similar to that produced with soy residue in all the parameter tested (mold ability, texture and overall acceptability. Generally, plantain flours from french and false horn yielded better quality fufu in terms of texture mold ability, overall acceptability, irrespective of the fibre type used.

Keywords: functional, organoleptic, particle size, sieve mesh, variety

Procedia PDF Downloads 375
718 Cable Diameter Effect on the Contact Temperature of Power Automotive Connector

Authors: Amine Beloufa, Mohamed Amirat

Abstract:

In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected.

Keywords: contact temperature, experimental test, finite element, power automotive connector

Procedia PDF Downloads 230
717 Improving an Automotive Bumper Structure for Pedestrian Protection

Authors: Mohammad Hassan Shojaeefard, Abolfazl Khalkhali, Khashayar Ghadirinejad

Abstract:

In the present study, first, a three-dimensional finite element model of lower legform impactor according to the pedestrian protection regulation EC 78/2009 is carried out. The FE model of lower legform impactor then validated on static and dynamic tests by three main criteria which are bending angle, shear displacement and upper tibia acceleration. At the second step, the validated impactor is employed to evaluate bumper of a B-class automotive based on pedestrian protection criteria defined in EC regulation. Finally, based on some investigations an improved design for the bumper is then represented and compared with the base design. Results show that very good improvement in meeting the pedestrian protection criteria is achieved.

Keywords: pedestrian protection, legform impactor, automotive bumper, finite element method

Procedia PDF Downloads 224
716 Carbon based Smart Materials: Functional Carbon for Lightweight Automotive Component 3D Printing

Authors: Mohammad M. Garmabia, Peyman Shahia, Jimi Tjonga, Mohini Saina

Abstract:

Flame retardant composite filaments with functional carbon in the composition were fabricated, and printed parts showed enhancedcrash resistance pproperties and imporved EMI shielding. The negligible mass difference after prolonged immersion in automobile chemicals revealed the outstanding performance of parts for under-the-hood high-temperature applications.

Keywords: FDM, crash worthy, EMI Shield, lightweight, automotive parts

Procedia PDF Downloads 73
715 Constructing Service Innovation Model for SMEs in Automotive Service Industries: A Case Study of Auto Repair Motorcycle in Makassar City

Authors: Muhammad Farid, Jen Der Day

Abstract:

The purpose of this study is to explore the construct of service innovation model for Small and medium-sized enterprises (SMEs) in automotive service industries. A case study of repair shop of the motorcycle at Makassar city illustrates measure innovation implementation, the degree of innovation, and identifies the type of innovation by the service innovation model for SMEs. In this paper, we interview 10 managers of SMEs and analyze their answers. We find that innovation implementation has been slowly; only producing new service innovation 0.62 unit average per year. Incremental innovation is the present option for SMEs, because they choose safer roads to improve service continuously. If want to create radical innovation, they still consider the aspect of cost, system, and readiness of human resources.

Keywords: service innovation, incremental innovation, SMEs, automotive service industries

Procedia PDF Downloads 320
714 Improving Automotive Efficiency through Lean Management Tools: A Case Study

Authors: Raed El-Khalil, Hussein Zeaiter

Abstract:

Managing and improving efficiency in the current highly competitive global automotive industry demands that companies adopt leaner and more flexible systems. During the past 20 years the domestic automotive industry in North America has been focusing on establishing new management strategies in order to meet market demands. 98The lean management process also known as Toyota Manufacturing Process (TPS) or lean manufacturing encompasses tools and techniques that were established in order to provide the best quality product with the fastest lead time at the lowest cost. The following paper presents a study that focused on improving labor efficiency at one of the Big Three (Ford, GM, Chrysler LLC) domestic automotive facility in North America. The objective of the study was to utilize several lean management tools in order to optimize the efficiency and utilization levels at the “Pre-Marriage” chassis area in a truck manufacturing and assembly facility. Utilizing three different lean tools (i.e. Standardization of work, 7 Wastes, and 5S) this research was able to improve efficiency by 51%, utilization by 246%, and reduce operations by 14%. The return on investment calculated based on the improvements made was 284%.

Keywords: lean manufacturing, standardized work, operation efficiency, utilization

Procedia PDF Downloads 486
713 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis

Procedia PDF Downloads 453
712 A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling

Authors: Sinan Yapici, Hayrettin Eroglu

Abstract:

The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K.

Keywords: radiation, diosorption, thallium, empirical modelling

Procedia PDF Downloads 237
711 Investigation Edge Coverage of Automotive Electrocoats Filled by Nano Silica Particles

Authors: Marzieh Bakhtiary Noodeh, Mahla Zabet

Abstract:

Attempts have been carried out to enhance the anticorrosion properties as well as edge coverage of an automotive electrocoating using the nano silica particles. To this end, the automotive electrocoating was reinforced with the nano silica particles at various weight fractions. The electrocoats were applied on the surface of punched edge followed by curing at 160⁰C for 20 min. The effects of nano silica particles on the rheological properties, influencing edge coverage were studied by a RMS (Rheometric Mechanical Spectrometer) technique. The anticorrosion properties were studied by a salt-spray test. The results obtained revealed that nano silica particles can significantly enhance the edge coverage by increasing minimum melt viscosity of electrocoats. It was shown that using 4 wt% nano silica particles, both anticorrosion properties and edge coverage of the electrocoats were significantly improved.

Keywords: nano silica, electrocoat, edge coverage, anticorrosion

Procedia PDF Downloads 273
710 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.

Keywords: deethanizer, demethanizer, residue gas, NGL

Procedia PDF Downloads 232
709 Multivariate Simulations of the Process of Forming the Automotive Connector Forging from ZK60 Alloy

Authors: Anna Dziubinska

Abstract:

The article presents the results of numerical simulations of the new forging process of the automotive connector forging from cast preform. The high-strength ZK60 alloy (belonging to the Mg-Zn-Zr group of Mg alloys) was selected for numerical tests. Currently, this part of the industry is produced by multi-stage forging consisting of operations: bending, preforming, and finishing. The use of the cast preform would enable forging this component in one operation. However, obtaining specific mechanical properties requires inducing a certain level of strain within the forged part. Therefore, the design of the preform, its shape, and volume are of paramount importance. In work presented in this article, preforms of different shapes were designed and assessed using Finite Element (FE) analysis. The research was funded by the Polish National Agency for Academic Exchange within the framework of the Bekker programme.

Keywords: automotive connector, forging, magnesium alloy, numerical simulation, preform, ZK60

Procedia PDF Downloads 102
708 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications

Authors: T. Gangadhararao, K. Krishna Kishore

Abstract:

Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.

Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code

Procedia PDF Downloads 402
707 Vocational Teaching Method: A Conceptual Model in Teaching Automotive Practical Work

Authors: Adnan Ahmad, Yusri Kamin, Asnol Dahar Minghat, Mohd. Khir Nordin, Dayana Farzeha, Ahmad Nabil

Abstract:

The purpose of this study is to identify the teaching method practices of the practical work subject in Vocational Secondary School. This study examined the practice of Vocational Teaching Method in Automotive Practical Work. The quantitative method used the sets of the questionnaire. 283 students and 63 teachers involved from ten VSS involved in this research. Research finding showed in conducting the introduction session teachers prefer used the demonstration method and questioning technique. While in deliver the content of practical task, teachers applied group monitoring and problem-solving approach. To conclude the task of automotive practical work, teachers choose re-explain and report writing to make sure students really understand all the process of teaching. VTM-APW also involved the competency-based concept to embed in the model. Derived from factors investigated, research produced the combination of elements in teaching skills and vocational skills which could be used as the best teaching method in automotive practical work for school level. As conclusion this study has concluded that the VTM-APW model is able to apply in teaching to make an improvement with current practices in Vocational Secondary School. Hence, teachers are suggested to use this method to enhance student's knowledge in Automotive and teachers will deliver skills to the current and future workforce relevant with the required competency skilled in workplace.

Keywords: vocational teaching method, practical task, teacher preferences, student preferences

Procedia PDF Downloads 426
706 Development of Value Productivity in Automotive Industry

Authors: Jiří Klečka, Dagmar Čámská

Abstract:

This paper is focused on the investigation of productivity (total productivity and partial productivity). The value productivity is an indicator of level and changes in technical economic efficiency of production factors. It represents an important factor in achieving corporate objectives. This text works with the contemporary concept of value productivity that means that indicators of the productivity express the effect of economic efficiency not only of inputs consumption, but also of inputs binding efficiency. This approach is based on principles of the economic profit, respectively the economic value added (EVA). The research is done on the sample of Czech enterprises operating in the automotive industry in the regions of Liberec and the Central Bohemia. The data sample covers the time period 2006-2011 which allows the comparison of development before crisis and during crisis period. It enables to discover the companies' reaction during crises and the regional comparison allows to showing if there are significant differences between regions.

Keywords: automotive industry, Czech Republic, economic efficiency, regional comparison, value productivity

Procedia PDF Downloads 259
705 Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process

Authors: Hamzeh Soltanali, Abbas Rohani, A. H. S. Garmabaki, Mohammad Hossein Abbaspour-Fard, Adithya Thaduri

Abstract:

Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process.

Keywords: automotive, performance, reliability, RAM, fluid filling process

Procedia PDF Downloads 326
704 A Social-Environmental Way for Production of Building Materials with Solid Residues

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are produced during water treatment and have recently been seen as a reusable material. The aim of this research was to perform characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, in Goiania, Brazil, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feed stock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR

Procedia PDF Downloads 511
703 Analysis of Automotive Sensor for Engine Knock System

Authors: Miroslav Gutten, Jozef Jurcik, Daniel Korenciak, Milan Sebok, Matej Kuceraa

Abstract:

This paper deals with the phenomenon of the undesirable detonation combustion in internal combustion engines. A control unit of the engine monitors these detonations using piezoelectric knock sensors. With the control of these sensors the detonations can be objectively measured just outside the car. If this component provides small amplitude of the output voltage it could happen that there would have been in the areas of the engine ignition combustion. The paper deals with the design of a simple device for the detection of this disorder. A construction of the testing device for the knock sensor suitable for diagnostics of knock combustion in internal combustion engines will be presented. The output signal of presented sensor will be described by Bessel functions. Using the first voltage extremes on the characteristics it is possible to create a reference for the evaluation of the polynomial residue. It should be taken into account that the velocity of sound in air is 330 m/s. This sound impinges on the walls of the combustion chamber and is detected by the sensor. The resonant frequency of the clicking of the motor is usually in the range from 5 kHz to 15 kHz. The sensor worked in the field to 37 kHz, which shall be taken into account on an own sensor resonance.

Keywords: diagnostics, knock sensor, measurement, testing device

Procedia PDF Downloads 414
702 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.

Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes

Procedia PDF Downloads 277