Search results for: acoustic emission technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8051

Search results for: acoustic emission technique

7931 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 120
7930 Embedded Acoustic Signal Processing System Using OpenMP Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

In this paper, altera de1-SoC FPGA board technology is utilized as a distinguished tool for nondestructive characterization of an aluminum circular cylindrical shell of radius ratio b/a (a: outer radius; b: inner radius). The acoustic backscattered signal processing system has been developed using OpenMP architecture. The design is built in three blocks; it is implemented per functional block, in a heterogeneous Intel-Altera system running under Linux. The useful data to determine the performances of SoC FPGA is computed by the analytical method. The exploitation of SoC FPGA has lead to obtain the backscattering form function and resonance spectra. A0 and S0 modes of propagation in the tube are shown. The findings are then compared to those achieved from the Matlab simulation of analytical method. A good agreement has, therefore, been noted. Moreover, the detailed SoC FPGA-based system has shown that acoustic spectra are performed at up to 5 times faster than the Matlab implementation using almost the same data. This FPGA-based system implementation of processing algorithms is realized with a coefficient of correlation R and absolute error respectively about 0.962 and 5 10⁻⁵.

Keywords: OpenMP, signal processing system, acoustic backscattering, nondestructive characterization, thin tubes

Procedia PDF Downloads 57
7929 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman

Abstract:

CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain

Procedia PDF Downloads 432
7928 Comparing ITV Definitions From 4D CT-PET and Breath-Hold Technique with Abdominal Compression

Authors: R. D. Esposito, P. Dorado Rodriguez, D. Planes Meseguer

Abstract:

In this work, we compare the contour of Internal Target Volume (ITV), for Stereotactic Body Radiation Therapy (SBRT) of a patient affected by a single liver metastasis, obtained from two different patient data acquisition techniques. The first technique consists in a free breathing Computer Tomography (CT) scan acquisition, followed by exhalation breath-hold and inhalation breath-hold CT scans, all of them applying abdominal compression while the second technique consists in a free breathing 4D CT-PET (Positron Emission Tomography) scan. Results obtained with these two methods are consistent, which demonstrate that at least for this specific case, both techniques are adequate for ITV contouring in SBRT treatments.

Keywords: 4D CT-PET, abdominal compression, ITV, SBRT

Procedia PDF Downloads 415
7927 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications

Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu

Abstract:

Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.

Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation

Procedia PDF Downloads 225
7926 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 117
7925 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag

Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker

Abstract:

Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.

Keywords: hemp, hempcrete, acoustic absorption, GGBS

Procedia PDF Downloads 372
7924 Sound Insulation between Buildings: The Impact Noise Transmission through Different Floor Configurations

Authors: Abdelouahab Bouttout, Mohamed Amara

Abstract:

The present paper examines the impact noise transmission through some floor building assemblies. The Acoubat software numerical simulation has been used to simulate the impact noise transmission through different floor configurations used in Algerian construction mode. The results are compared with the available measurements. We have developed two experimental methods, i) field method, and ii) laboratory method using Brüel and Kjær equipments. The results show that the different cases of floor configurations need some improvement to ensure the acoustic comfort in the receiving apartment. The recommended value of the impact sound level in the receiving room should not exceed 58 dB. The important results obtained in this paper can be used as platform to improve the Algerian building acoustic regulation aimed at the construction of the multi-storey residential building.

Keywords: impact noise, building acoustic, floor insulation, resilient material

Procedia PDF Downloads 341
7923 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models

Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla

Abstract:

Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.

Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory

Procedia PDF Downloads 308
7922 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting

Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy

Abstract:

In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.

Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS (Microelectromechanical Systems), microfluidics

Procedia PDF Downloads 144
7921 Carbon Footprint Reduction Using Cleaner Production Strategies in a Otoshimi Producing Plant

Authors: Razuana Rahim, Abdul Aziz Abdul Raman

Abstract:

In this work, a study was conducted to evaluate the feasibility of using Cleaner Production (CP) strategy to reduce carbon dioxide emission (CO2) in a plant that produces Otoshimi. CP strategy is meant to reduce CO2 emission while taking into consideration the economic aspect. For this purpose, a CP audit was conducted and the information obtained were analyzed and major contributors of CO2 emission inside the boundary of the production plant was identified. Electricity, water and fuel consumption and generation of solid waste and wastewater were identified as the main contributors. Total CO2 emission generated was 0.27 kg CO2 per kg of Otoshimi produced, where 68% was contributed by electricity consumption. Subsequently, a total of three CP options were generated and implementations of these options are expected to reduce the CO2 emission from electricity consumption to 0.16 kg CO2 per kg of Otoshimi produced, a reduction of about 14%. The study proves that CP strategy can be implemented even without any investment to reduce CO2 for a plant that produces Otoshimi.

Keywords: carbon dioxide emission, cleaner production audit, cleaner production options, otoshimi production

Procedia PDF Downloads 394
7920 The Next Game Changer: 3-D Printed Musical Instruments

Authors: Leonardo Ko

Abstract:

In an era marked by rapid technological innovation, the classical instrument industry nonetheless has not seen significant change. Is this a matter of stubborn traditionalism, or do old, conventional instruments really sound better? Because of the widespread use of 3-D printing, it seems feasible to produce modern, 3-D printed instruments that adhere to the basic conventions of standard construction. This study aimed to design and create a practical, effective 3-D printed acoustic violin. A cost-benefit analysis of materials and design is presented in addition to a report on sound tests in which a pool of professional musicians compared the traditional violin to its synthetic counterpart with regard to acoustic properties. With a low-cost yet functional instrument, musicians of all levels would be able to afford instruments with much greater ease; the present study thus hopes to contribute to efforts to increase the accessibility of classical music education.

Keywords: acoustic musical instrument, classical musical education, low-cost, 3-D printing

Procedia PDF Downloads 200
7919 Combustion and Emission Characteristics in a Can-Type Combustion Chamber

Authors: Selvakuma Kumaresh, Man Young Kim

Abstract:

Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature.

Keywords: combustion, emission, can-type combustion chamber, CFD, motility of holes, swirl flow

Procedia PDF Downloads 349
7918 Influence of Sintering Temperatures in Er³⁺/Yb³⁺/Tm³⁺ Tri-Doped Y₂O₃ Nanophosphors

Authors: Hyeon Mi Noh, Ju Hyun Oh, Jung Hyun Jeong, Haeyoung Choi, Jung Hwan Kim

Abstract:

The Er³⁺/Yb³⁺/Tm³⁺ tri-doped Y₂O₃ nanophosphors were synthesized by solvothermal method and its temperature dependence of the white upconversion emission has been studied by using 975 nm laser diode. The upconversion emission spectra in 1 mol% Er³⁺/5 mol% Yb³⁺/xTm³ tri-doped Y₂O₃ nanophosphors sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increase with Tm³⁺ concentration from 0 to 0.5 mol%, it is due to the 2F7/2→2F5/2 transition of Yb³⁺ around 10,000 cm-1 could easily reach the Tm³⁺ sates. The white light is composed with the blue (1G4→3H6 of Tm³⁺), green (2H11/2, 4S3/2→4I15/2 of Er³⁺), and red (4F9/2→4I15/2 of Er³⁺) upconversion radiations. The Y₂O₃: Er³⁺/Yb³⁺/Tm³⁺ nanophosphors show from white to green upconversion emission at power of 600 mW/cm² as sintering temperature increased. The calculated Commission Internationale de l’Eclairage (CIE) coordinates can be located in the white area with various sintering temperatures, in sintered at 1000 °C, and their color coordinates are very close to the standard white-light emission (0.33, 0.33). Their upconversion processes were explained by measuring the upconversion luminescence spectra and pump power dependence and energy level diagram.

Keywords: white upconversion emission, nanophosphors, energy transfer, solvothermal method

Procedia PDF Downloads 301
7917 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor

Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh

Abstract:

Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.

Keywords: acoustic, aptasensor, detection, nonlinear

Procedia PDF Downloads 535
7916 The Acoustic Features of Ulu Terengganu Malay Monophthongs

Authors: Siti Nadiah Nuwawi, Roshidah Hassan

Abstract:

Dialect is one of the language variants emerge due to certain factors. One of the distinctive dialects spoken by people in Malaysia is the one spoken by those who reside in the inland area of the East Peninsular Malaysia; Hulu Terengganu, which is known as Ulu Terengganu Malay dialect. This dialect is unique since it possesses ancient elements in its phonology elements, which makes it is hard to be understood by people who come from other states. There is dearth of acoustic studies of the dialect in which this paper aims to attain by describing the quality of the monophthongs found in the dialect instrumentally based on their first and second formant values. The hertz values are observed and recorded from the waveforms and spectrograms depicted in PRAAT version 6.0.43 software. The findings show that Ulu Terengganu Malay speakers produced ten monophthongs namely /ɛ/, /e/, /a/, /ɐ/, /ɞ/, /ɔ/, /i/, /o/, /ɵ/ and /ɘ/ which applauds a few monophthongs suggested by past researchers which were based on auditory impression namely /ɛ/, /e/, /a/, ɔ/, and /i/. It also discovers the other five monophthongs of the dialect which are unknown before namely /ɐ/, /ɞ/, /o/, /ɵ/ and /ɘ/.

Keywords: acoustic analysis, dialect, formant values, monophthongs, Ulu Terengganu Malay

Procedia PDF Downloads 142
7915 Analysis of Performance-Emission Characteristics of a Single Cylinder Diesel Engine Fueled with Coconut Oil

Authors: Purna Singh, Vaibhav Tripathi, Vinayak Kalluri, Sumit Roy

Abstract:

The present experimental work was carried out to investigate performance and emission characteristics of single cylinder diesel engine operating under dual-fuel mode with coconut oil blended with diesel. Coconut oil is one of the edible oil which is abundant in tropical countries and has properties like diesel. To this end, performance and emission parameters of diesel-coconut oil blends were reported in the current study. The results were drawn at different load steps of engine operation with 10% and 20% of coconut oil linearly blended with diesel. From the results, it was evident that coconut oil can be successfully replaced up to 20% of diesel without hampering the performance-emission characteristics of the existing diesel engine.

Keywords: coconut oil, alternative fuel, emissions, dual-fuel

Procedia PDF Downloads 162
7914 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles

Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh

Abstract:

Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.

Keywords: low temperature luminescence spectroscopy, material identification, strontium aluminates phosphor, emission properties

Procedia PDF Downloads 421
7913 SO2 Sensing Performance of Nanostructured CdSnO3 Thin Films Prepared by Spray Pyrolysis Technique

Authors: R. H. Bari

Abstract:

The nanostructured thin films of CdSnO3 are sensitive to change in their environment. CdSnO3 is successfully used as gas sensor due to the dependence of the electrical conductivity on the ambient gas composition. Nanostructured CdSnO3 thin films of different substrate temperature (300 0C, 350 0C, 400 0C and 450 0C) were deposited onto heated glass substrate by simple spray pyrolysis (SP) technique. Sensing elements of nanostructured CdSnO3 were annealed at 500 0C for 1 hrs. Characterization includes a different analytical technique such as, X-ray diffractogram (XRD), energy dispersive X-ray analysis (EDAX), and Field emission scanning electron microscope (FE-SEM). The average grain size observed from XRD and FF-SEM was found to be less than 18.36 and 23 nm respectively. The films sprayed at substrate temperature for 400 0C was observed to be most sensitive (S = 530) to SO2 for 500 ppm at 300 0C. The response and recovery time is 4 sec, 8 sec respectively.

Keywords: nanostructured CdSnO3, spray pyrolysis, SO2 gas sensing, quick response

Procedia PDF Downloads 259
7912 A Review on Benzo(a)pyrene Emission Factors from Biomass Combustion

Authors: Franziska Klauser, Manuel Schwabl, Alexander Weissinger, Christoph Schmidl, Walter Haslinger, Anne Kasper-Giebl

Abstract:

Benzo(a)pyrene (BaP) is the most widely investigated representative of Polycyclic Aromatic Hydrocarbons (PAH) as well as one of the most toxic compounds in this group. Since 2013 in the European Union a limit value for BaP concentration in the ambient air is applied, which was set to a yearly average value of 1 ng m-3. Several reports show that in some regions, even where industry and traffic are of minor impact this threshold is regularly exceeded. This is taken as proof that biomass combustion for heating purposes contributes significantly to BaP pollution. Several investigations have been already carried out on the BaP emission behavior of biomass combustion furnaces, mostly focusing on a certain aspect like the influences from wood type, of operation type or of technology type. However, a superior view on emission patterns of BaP from biomass combustion and the aggregation of determined values also from recent studies is not presented so far. The combination of determined values allows a better understanding of the BaP emission behavior from biomass combustion. In this work the review conclusions are driven from the combination of outcomes from different publication. In two examples it was shown that technical progress leads to 10 to 100 fold lower BaP emission from modern furnaces compared to old technologies of equivalent type. It was also indicated that the operation with pellets or wood chips exhibits clearly lower BaP emission factors compared to operation with log wood. Although, the BaP emission level from automatic furnaces is strongly impacted by the kind of operation. This work delivers an overview on BaP emission factors from different biomass combustion appliances, from different operation modes and from the combustion of different fuel and wood types. The main impact factors are depicted, and suggestions for low BaP emission biomass combustion are derived. As one result possible investigation fields concerning BaP emissions from biomass combustion that seem to be most important to be clarified are suggested.

Keywords: benzo(a)pyrene, biomass, combustion, emission, pollution

Procedia PDF Downloads 334
7911 Development of a Microfluidic Device for Low-Volume Sample Lysis

Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman

Abstract:

We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.

Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet

Procedia PDF Downloads 52
7910 An Approach to Make Low-Cost Self-Compacting Geo-Polymer Concrete

Authors: Ankit Chakraborty, Raj Shah, Prayas Variya

Abstract:

Self-compacting geo-polymer concrete is a blended version of self-compacting concrete developed in Japan by Okamura. H. in 1986 and geo-polymer concrete proposed by Davidovits in 1999. This method is eco-friendly as there is low CO₂ emission and reduces labor cost due to its self-compacting property and zero percent cement content. We are making an approach to reduce concreting cost and make concreting eco-friendly by replacing cement fully and sand by a certain amount of industrial waste. It will reduce overall concreting cost due to its self-compatibility and replacement of materials, forms eco-friendly concreting technique and gives better fresh property and hardened property results compared to self-compacting concrete and geo-polymer concrete.

Keywords: geopolymer concrete, low cost concreting, low carbon emission, self compactability

Procedia PDF Downloads 206
7909 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health

Authors: Frederik Schulte, Stefan Voß

Abstract:

The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.

Keywords: emission inventories, exposure models, transport emissions, urban health

Procedia PDF Downloads 359
7908 Green, Yellow, Orange and Red Emission of Sm3+ Doped Borotellurite Glass under the 480nm Excitation Wavelength

Authors: M. R. S. Nasuha, K. Azman, H. Azhan, S. A. Senawi, A . Mardhiah

Abstract:

Sm3+ doped borotellurite glasses of the system (70-x) TeO2-20B2O3-10ZnO-xSm2O3 (where x = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 mol%) have been prepared using melt-quenching method. Their physical properties such as density, molar volume and oxygen packing density as well as the optical measurements by mean of their absorption and emission characteristic have been carried out at room temperature using UV/VIS and photoluminescence spectrophotometer. The result of physical properties is found to vary with respect to Sm3+ ions content. Meanwhile, three strong absorption peaks are observed and are well resolved in the ultraviolet and visible regions due to transitions between the ground state and various excited state of Sm3+ ions. Thus, the photoluminescence spectra exhibit four emission bands from the initial state, which correspond to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 fluorescence transitions at 562 nm, 599 nm, 645 nm, and 706 nm, respectively.

Keywords: absorption, borotellurite, emission, optical, physical

Procedia PDF Downloads 668
7907 Biodiesel Is an Alternative Fuel for CI Engines

Authors: Sanat Kumar, Rahul Kumar Tiwari

Abstract:

At this time when society is becoming increasingly aware of the declining reserves of fossil, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. In this regard, the significance of biodiesel is technically and commercially viable alternative to fossil-diesel. There are different potential feed stocks for biodiesel production. This paper analyses the performance, combustion and emission characteristics of biodiesel from different feed stocks. Biodiesel fuel is considered as offering many benefits like reduction of greenhouse gas emissions and many harmful pollutants (PM, HC, CO etc.). This paper critically reviews the effect of injection timing on combustion and emission characteristics. An attempt has been carried out to discuss the effect of biodiesel in terms of combustion, emission and performance based up on composition and properties. The results of the study show that different chemical composition leads to variation in its combustion, performance and emission characteristics. Biodiesel produced from different aspired feed stocks reduces the pollutant emission and resistive to oxidation but exhibit poor atomization. As a conclusion many research needs to be carried out to understand the relationship between the types of biodiesel feed stock, performance conclusion and emission.

Keywords: atomization, biodiesel, greenhouse gas, oxidation

Procedia PDF Downloads 540
7906 Study of a Lean Premixed Combustor: A Thermo Acoustic Analysis

Authors: Minoo Ghasemzadeh, Rouzbeh Riazi, Shidvash Vakilipour, Alireza Ramezani

Abstract:

In this study, thermo acoustic oscillations of a lean premixed combustor has been investigated, and a mono-dimensional code was developed in this regard. The linearized equations of motion are solved for perturbations with time dependence〖 e〗^iwt. Two flame models were considered in this paper and the effect of mean flow and boundary conditions were also investigated. After manipulation of flame heat release equation together with the equations of flow perturbation within the main components of the combustor model (i.e., plenum/ premixed duct/ and combustion chamber) and by considering proper boundary conditions between the components of model, a system of eight homogeneous equations can be obtained. This simplification, for the main components of the combustor model, is convenient since low frequency acoustic waves are not affected by bends. Moreover, some elements in the combustor are smaller than the wavelength of propagated acoustic perturbations. A convection time is also assumed to characterize the required time for the acoustic velocity fluctuations to travel from the point of injection to the location of flame front in the combustion chamber. The influence of an extended flame model on the acoustic frequencies of combustor was also investigated, assuming the effect of flame speed as a function of equivalence ratio perturbation, on the rate of flame heat release. The abovementioned system of equations has a related eigenvalue equation which has complex roots. The sign of imaginary part of these roots determines whether the disturbances grow or decay and the real part of these roots would give the frequency of the modes. The results show a reasonable agreement between the predicted values of dominant frequencies in the present model and those calculated in previous related studies.

Keywords: combustion instability, dominant frequencies, flame speed, premixed combustor

Procedia PDF Downloads 353
7905 Free Radical Dosimetry for Ultrasound in Terephthalic Acid Solutions Containing Gold Nanoparticles

Authors: Ahmad Shanei, Mohammad Mahdi Shanei

Abstract:

When a liquid is irradiated with high intensities (> 1 W) and low frequencies (≤ 1 MHz) ultrasound, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. The existence of particles in liquid provide nucleation sites for cavitation bubbles and lead to decrease the ultrasonic intensity threshold needed for cavitation onset. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing 30 nm gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a range of condition in medical ultrasound fields.

Keywords: acoustic cavitation, gold nanoparticle, chemical dosimetry, terephthalic acid

Procedia PDF Downloads 438
7904 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 45
7903 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System

Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain

Abstract:

Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.

Keywords: car parking, Co2, Co2 reduction, IoT, merge sort, number plate recognition, smart car parking

Procedia PDF Downloads 116
7902 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 106