Influence of Sintering Temperatures in Er³⁺/Yb³⁺/Tm³⁺ Tri-Doped Y₂O₃ Nanophosphors

Authors: Hyeon Mi Noh, Ju Hyun Oh, Jung Hyun Jeong, Haeyoung Choi, Jung Hwan Kim

Abstract : The $Er^{3+}/Yb^{3+}/Tm^{3+}$ tri-doped Y_2O_3 nanophosphors were synthesized by solvothermal method and its temperature dependence of the white upconversion emission has been studied by using 975 nm laser diode. The upconversion emission spectra in 1 mol% $Er^{3+}/5$ mol% Yb^{3+}/xTm^3 tri-doped Y_2O_3 nanophosphors sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increase with Tm^{3+} concentration from 0 to 0.5 mol%, it is due to the $2F7/2 \rightarrow 2F5/2$ transition of Yb^{3+} around 10,000 cm-1 could easily reach the Tm^{3+} sates. The white light is composed with the blue $(1G4 \rightarrow 3H6 \text{ of } Tm^{3+})$, green $(2H11/2, 4S3/2 \rightarrow 4I15/2 \text{ of } Er^{3+})$, and red $(4F9/2 \rightarrow 4I15/2 \text{ of } Er^{3+})$ upconversion radiations. The Y_2O_3 : $Er^{3+}/Yb^{3+}/Tm^{3+}$ nanophosphors show from white to green upconversion emission at power of 600 mW/cm² as sintering temperature increased. The calculated Commission Internationale de l'Eclairage (CIE) coordinates can be located in the white area with various sintering temperatures, in sintered at 1000 °C, and their color coordinates are very close to the standard white-light emission (0.33, 0.33). Their upconversion processes were explained by measuring the upconversion luminescence spectra and pump power dependence and energy level diagram.

Keywords: white upconversion emission, nanophosphors, energy transfer, solvothermal method **Conference Title:** ICNST 2017: International Conference on Neurorobotic Systems and Technologies

Conference Location : Osaka, Japan **Conference Dates :** October 09-10, 2017