Search results for: IC50
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 281

Search results for: IC50

101 Chemical and Biological Examination of De-Oiled Indian Propolis

Authors: Harshada Vaidya-Kannur, Dattatraya Naik

Abstract:

Propolis, one of the beehive products also referred as bee-glue is sticky dark coloured complex mixture of compounds. The volatile oil can be isolated from the propolis by hydrodistillation. The mark that is left behind after the removal of volatile oil is referred as the de-oiled propolis. Antioxidant as well as anti-inflammatory properties of total ethanolic extract of de-oiled propolis (TEEDP) was investigated. Another lot of deoiled propolis was successively exacted with hexane, ethyl acetate and ethanol. Activities of these fractions were also determined. Antioxidant activity was determined by studying ABTS, DPPH and NO radical scavenging. Determination of anti-inflammatory activity was carried out by topical TPA induced mouse ear oedema model. It is noteworthy that ethyl acetate fraction of deoiled propolis (EAFDP) exhibited 49.45 % TEAC activity at the concentration 0.2 mg/ml which is equivalent to the activity of trolox at the concentration 0.2 mg/ml. Its DPPH scavenging activity (72.56%) was closely comparable to that of trolox (75%). However its NO scavenging activity was comparatively low. From IC50 values it could be concluded that the efficiency of scavenging ABTS radicals by the de-oiled propolis was more pronounced as compared to scavenging of other radicals. Studies by TPA induced mouse ear inflammation model indicated that the de-oiled propolis of Indian origin had significant topical anti-inflammatory activity. The EAFDP was found to be the most active fraction for this activity also. The purification of EAFP yielded six pure crystalline compounds. These compounds were identified by their physical data and spectral data.

Keywords: anti-inflammatory activity, anti-oxidant activity, column chromatography, de-oiled propolis

Procedia PDF Downloads 264
100 In vitro Antioxidant Activity of Caesalpinia sappan Extract

Authors: Monthon Tangjitmungman

Abstract:

Numerous diseases have been linked to oxidative stress, in which a disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most abundant antioxidants found in plants, and they are highly effective at scavenging oxidative free radicals. Due to the presence of phenolic compounds in Caesalpinia sappan has been discovered to have antioxidant activity. It has several health benefits, the most important of which is preventing cardiovascular and cancer diseases. This study aimed to determine the phenolic content and antioxidant activity of C. sappan extract using a variety of antioxidant assays. The extract of C. sappan was made using a mixture of solvents (ethyl alcohol: water in ratio 8:2). The total phenolic content of C. sappan extract was determined and expressed as gallic acid equivalents using the Folin-Cioucalteu method (GAE). The antioxidant activity of C. sappan extract was assessed using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ABTS radical scavenging capacity assay. An association was found between antioxidant activity and total phenol content. The antioxidant activity of C. sappan extract was also determined by DPPH and ABTS assays. The IC50 values for C. sappan extract from DPPH and ABTS assays were 54.48 μg/mL ± 0.545 and 25.46 μg/mL ± 0.790, respectively, in the DPPH assay. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. sappan extract contains a high level of total phenolics and exhibits significant antioxidant activity. Nevertheless, more research should be done on the antioxidant activity, such as SOD and ROS scavenging assays and in vivo experiments, to determine whether the compound has antioxidant activity.

Keywords: ABTS assay, antioxidant activity, Caesalpinia sappan, DPPH assays, total phenolic content

Procedia PDF Downloads 340
99 Effects of Drying Temperatures on the Qualitative and Quantitative Phytochemicals of Aqueous Extracts If the Calyces of Hibiscus Sabdariffa

Authors: John O. Efosa, S. Egielewa, M. A. Azeke

Abstract:

Hibiscus sabdariffa (Hs) is known for its delicacy and also for medicinal properties. The flower calyces are usually sun- or oven-dried after harvesting. There are unverified claims that calyces dried at lower temperatures have better medicinal potentials than those dried at higher temperatures. The present work, therefore, aimed to study the effects of drying temperatures on the photochemical composition and antioxidant potential of aqueous extracts of the calyces of Hs. The calyces were dried at different temperatures (freeze-drying at -580C, drying at 300C, 400C, and 500 C.) respectively to constant weight. Samples (25 g) of dried calyces from each drying temperatures were weighed and placed in clean conical flasks and extracted; each was used for the analysis. Validated analytical assays were used for the determination of the different Phytochemicals. From the results obtained, it was observed that drying at 30°C resulted in the highest retention of total phenols, total flavonoids, tannins, alkaloids and saponins. Using the Inhibition Concentration values (IC50), some antioxidant parameters were found to follow the same trend as the earlier mentioned phytochemicals. Drying at 30°C resulted in the highest retention of DPPH Radical Scavenging Activity, Ferric Reducing Antioxidant Potential (FRAP), Nitrite radical scavenging Activity, 2, 2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) radical scavenging activity There were, however, significant reductions in vitamin C and oxalate contents as the drying temperature increased (P < 0.05). From the results, it recommended that the calyces of Hibiscus sabdariffa be dried at 30°C in order to optimally elicit its medicinal potentials.

Keywords: antioxidant, drying temperature, hibiscus sabdariffa, phytochemicals, quantitative

Procedia PDF Downloads 127
98 In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts

Authors: Kriyapa lairungruang, Arunporn Itharat

Abstract:

Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use.

Keywords: antioxidant activity, cytotoxic activity, Laryngeal epidermoid carcinoma, Limonia acidissima L., oral epidermoid carcinoma

Procedia PDF Downloads 448
97 Oral Administration of Azithromycin Ameliorates Trypanosomosis in Trypanosoma congolense and T. Brucei Brucei Infected Mice

Authors: Nthatisi I. Molefe-Nyembe, Keisuke Suganuma, Oriel M. M. Thekisoe, Xuan Xuenan, Noboru Inoue

Abstract:

African trypanosomosis is a devastating disease of animals caused by parasites of the genus Trypanosoma negatively affecting the economic status of more than 36 African countries. Few available drugs for the treatment of trypanosomosis remain inaccessible in remote areas, are associated with severe toxicity and most importantly, resistance has widely developed against their usage. Therefore, safe, effective and easily administrable drugs are urgently in need. The objective of the current study was to determine efficacy of azithromycin (AZM), on T. congolense, T. brucei brucei in vitro and in vivo. A 96 well luciferase assay was conducted to determine the trypanocidal effect of AZM on T. congolense, T. b. brucei and T. evansi as well as the cytotoxicity effect on the MDBK and NIH 3T3 cells. Additionally, TEM analysis was conducted to determine the morphological alteration on the AZM treated samples. Mice were infected with T. congolense and T. b. brucei and orally treated with AZM for 7 and 28 days referred to as the short and the long-term treatment. The in vitro IC50 values of AZM on T. congolense, T. b. brucei and T. evansi was 0.19 ± 0.17; 3.69 ± 2.26 and 1.81 ± 1.82 μg/mL, respectively, while the cytotoxicity effects values were greater than 25 μg/mL. A vacuole-like structure was observed in the TEM imaging of AZM treated T. congolense, while the presence of glycosomes and acidocalcisome-like structured were detected in T. b. brucei samples. In vivo, AZM was more effective against T. congolense infected mice than T. b. brucei. In conclusion, AZM exhibited the trypanocidal effects on T. congolense and T. b. brucei infected mice. However, further studies are necessary to determine the metabolic pathway responsible for the observed efficacy.

Keywords: animal trypanosomosis, azithromycin, oral administration, trypanosoma congolense

Procedia PDF Downloads 36
96 Inhibitory Effect of P2Y1R Agonist 1-Indolinoalkyl 2-Phenolic Derivative on Prostate Cancer Cell Proliferation via the MAPK Signalling

Authors: Hien Thi Thu Le, Nuno Rafael Candeias, Olli Yli-Harja, Meenakshisundaram Kandhavelu

Abstract:

Purinergic receptor 1 (P2Y1R) is the potential therapeutic target for inducing prostate cancer (PCa) cell death. Recently, 1-indolinoalkyl 2-phenolic derivative, HIC, was identified as a P2Y1R agonist that increases apoptosis and inhibits cell proliferation of PCa. However, the biological effects of HIC have not been extensively studied at the molecular level. In the present study, we have investigated the anticancer effects of HIC and the molecular mechanisms underlying in PCa cells. Half maximal inhibitory concentration (IC₅₀) of HIC was measured as 15.98 μM and 15.64 μM for DU145 and PC3 cells, respectively. In addition, we found that HIC inhibited cell growth and metastasis of PC3 and DU145 cells colonies, spheroid areas, and migrated cells. RNA seq analysis revealed significant changes of over 3000 genes (p value < 0.05) upon HIC treatment in PC3 and DU145 cells. Genes involved in DNA damage, apoptosis, cell cycle arrest at G1/S phase were modulated by HIC treatment. MAPK and NF-κB protein array revealed the increased expression of ERK1/2, JNK1/2, p53 phosphorylation, and p53 protein. ERK1/2 and JNK1/2 activations are known to increase the stabilization of p53, a tumor suppressor protein, which is required to arrest the cell cycle at G1/S phase and cause cell death of PCa cells. Overall, our results suggest that HIC can serve as a multi-dimensional chemotherapeutic agent possessing strong cytotoxic, anti-cancer, and anti-metastasis against PCa growth.

Keywords: prostate cancer, P2Y1 receptor, apoptosis, metastasis

Procedia PDF Downloads 99
95 Chemical Composition, in vitro Antioxidant Activity and Gas Chromatography–Mass Spectrometry Analysis of Essential Oil and Extracts of Ruta chalpensis aerial Parts Growing in Tunisian Sahara

Authors: Samir Falhi, Neji Gharsallah, Adel Kadri

Abstract:

Ruta chalpensis L. is a medicinal plant in the family of Rutaceae, has been used as an important traditional in the Mediterranean basin in the treatment of many diseases. The current study was devoted to investigate and evaluate the chemical composition, total phenolic, flavonoid and tannin contents, and in vitro antioxidant activities of ethyl acetate, ethanol and hydroalcoholic extracts and essential oil from the aerial parts of Ruta chalpensis from Tunisian Sahara. Total phenolic, flavonoid and tannin contents of extracts ranged from 40.39 ± 1.87 to 75.13 ± 1.22 mg of GAE/g, from 22.62 ± 1.55 to 27.51 ± 1.04 mg of QE/g, and from 5.56 ± 1.32 to 10.89 ± 1.10 mg of CE/g respectively. Results showed that the highest antioxidant activities was determined for ethanol extract with IC50 value of 26.23 ± 0.91 µg/mL for 2,2-diphenyl-1-picrylhydrazyl assay, and for hydroalcoholic extract with EC50 value of 412.95±6.57 µg/mL and 105.52±2.45 mg of α-tocopherol/g for ferric reducing antioxidant power and total antioxidant capacity assays, respectively. Furthermore, Gas Chromatography–Mass Spectrometry (GC-MS) analysis of essential oil led to identification of 20 compounds representing 98.96 % of the total composition. The major components of essential oil were 2-undecanone (39.13%), 2-nonanone (25.04), 1-nonene (13.81), and α-limonene (7.72). Spectral data of Fourier-transform infrared spectroscopy analysis (FT-IR) of extracts revealed the presence of functional groups such as C= O, C─O, ─OH, and C─H, which confirmed its richness on polyphenols and biological active functional groups. These results showed that Ruta chalpensis could be a potential natural source of antioxidants that can be used in food and nutraceutical applications.

Keywords: antioxidant, FT-IR analysis, GC-MS analysis, phytochemicals contents, Ruta chalpensis

Procedia PDF Downloads 114
94 Hepatoprotective Evaluation of Potent Antioxidant Fraction from Urtica dioica L.: In vitro and In vivo Studies

Authors: Bhuwan C. Joshi, Atish Prakash, Ajudhia N. Kalia

Abstract:

Ethnopharmacological relevance: The plant Urtica dioica L. (Urticaceae) is used in various diseases including hepatic ailments. Traditionally, the leaves and roots of the plant are used in jaundice. Objective: The aim of the present work was to evaluate hepatoprotective potential of potent antioxidant from Urtica dioica L. against CCl4 induced hepatotoxicity in-vitro and in-vivo model. Materials and methods: Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n-butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH radicals scavenging assay. Fractions were subjected to in-vitro cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo study. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Results and conclusion: The ethyl acetate fraction (EAF) of Urtica. dioica L. possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 µg/ml). The in-vitro cell line study showed EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and tissue. Column chromatography of most potent antioxidant fraction (EAF) leads to the isolation of 4-hydroxy-3-methoxy cinnamic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo.

Keywords: Urtica dioica L., antioxidant, HepG2 cell line, hepatoprotective

Procedia PDF Downloads 391
93 Comparison of Acetylcholinesterase Reactivators Cytotoxicity with Their Structure

Authors: Lubica Muckova, Petr Jost, Jaroslav Pejchal, Daniel Jun

Abstract:

The development of acetylcholinesterase reactivators, i.e. antidotes against organophosphorus poisoning, is an important goal of defence research. The aim of this study was to compare cytotoxicity and chemical structure of 5 currently available (pralidoxime, trimedoxime, obidoxime, methoxime, and asoxime) and 4 newly developed compounds (K027, K074, K075, and K203). In oximes, there could be at least four important structural factors affecting their toxicity, including the number of oxime groups in the molecule, the position of oxime group(s) on pyridinium ring, the length of carbon linker, and the substitution by oxygen or insertion of the double bond into the connection chain. The cytotoxicity of tested substances was measured using colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay (MTT assay) in SH-SY5Y cell line. Toxicity was expressed as toxicological index IC₅₀. The tested compounds showed different cytotoxicity ranging from 1.5 to 27 mM. K027 was the least, and methoxime was the most toxic reactivator. The lowest toxicity was found in a monopyridinium reactivator and bispyridinium reactivators with simple 3C carbon linker. Shortening of connection chain length to 1C, incorporation of oxygen moiety into 3C compounds, elongation of carbon linker to 4C and insertion of a double bond into 4C substances increase AChE reactivators' cytotoxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: acetylcholinesterase, cytotoxicity, organophosphorus poisoning, reactivators of acetylcholinesterase

Procedia PDF Downloads 284
92 Rapid Green Synthesis of Silver Nanoparticles Using Solanum Nigrum Leaves Extract with Antimicrobial and Anticancer Properties

Authors: Anushaa A.

Abstract:

In this work, silver nanoparticles (AgNP) were manufactured directly without harmful chemicals utilising methanol extract (SNLME) Solanum nigrume leaves. We are using nigrum leaf extract from Solanum, which converts silver nitrate to silver ions, for synthesization purposes. An examination of the AgNP produced was performed using ultraviolet (UV-VIS) spectroscopy, infrared spectroscopy (FTIR) transformed from Fourier and scanning electrons (SEM). Biological activity was also tested. UV-VIS has proven that biosynthesized AgNP exists (420-450 nm). The FTIR spectrum has been utilised to confirm the presence of different functional groups within the biomolecules, which are a nanoparticular capping agent and the spectroscopic and crystal nature of AgNP. The viability of the silver nanoparticles was evaluated using zeta potential calculations. Negative zeta potential of -33.4 mV demonstrated the stability of silver-nanoparticles. The morphology of AgNP was examined using a scanning electron microscope. Greenly generated AgNP showed significant anti-Staphylococcus aureus, Candida, and Escherichia coli action. The green AgNP demonstration indicated that the IC50 for the human teratocarcinoma cell line was 29.24 μg/ml during 24 hours of therapy (PA1 Ovarian cell line). The dose-dependent effects were reported in both antibacterial and cytotoxicity assays and as an effective agent. Finally, the findings of this research showed that silver nanoparticles generated might serve as a viable therapeutic agent to combat microorganisms killing and curing cancer.

Keywords: antimicrobial activity, PA1 ovarian cancer cell line, silver nanoparticles, Solanum nigrum

Procedia PDF Downloads 152
91 Effect of Biostimulants on Downstream Processing of Endophytic Fungi Hosted in Aromatic Plant, Ocimum basicilium

Authors: Kanika Chowdhary, Satyawati Sharma

Abstract:

Endophytic microbes are hosted inside plants in a symbiotic and hugely benefitting relationship. Exploring agriculturally beneficial endophytes is quite a prospective field of research. In the present work fungal endophytes associated with aromatic plant Ocimum basicilium L. were investigated for biocontrol potential. The anti-plant pathogenic activity of fungal endophytes was tested against causal agent of stem rot Sclerotinia sclerotiorum. 75 endophytic fungi were recovered through culture-dependent approach. Fungal identification was performed both microscopically and by rDNA ITS sequencing. Curvuaria lunata (Sb-6) and Colletotrichum lindemuthianum (Sb-8) inhibited 86% and 72% mycelia growth of S. sclerotinia on Sabouraud dextrose agar medium at 7.4 pH. Small-scale fermentation was carried out on sterilised oatmeal grain medium. In another set of experiment, fungi were grown in oatmeal grain medium amended with certain biostimulants such as aqueous seaweed extract (10% v/w); methanolic seaweed extract (5% v/w); cow urine (20% v/w); biochar (10% w/w) in triplicate along with control of each to ascertain the degree of metabolic difference and anti-plant pathogenic activity induced. Phytochemically extracts of both the fungal isolates showed the presence of flavanoids, phenols, tannins, alkaloids and terpenoids. Ethylacetate extract of C. lunata and C. lindemuthianum suppressed S. sclerotinia conidial germination at IC50 values of 0.514± 0.02 and 0.913± 0.04 mg/ml. Therefore, fungal endophytes of O. basicilium are highly promising bio-resource agent, which can be developed further for sustainable agriculture.

Keywords: endophytic fungi, ocimum basicilium, sclerotinia sclerotiorum, biostimulants

Procedia PDF Downloads 152
90 Indenyl and Allyl Palladates: Synthesis, Bonding, and Anticancer Activity

Authors: T. Scattolin, E. Cavarzerani, F. Visentin, F. Rizzolio

Abstract:

Organopalladium compounds have recently attracted attention for their high stability even under physiological conditions and, above all, for their remarkable in vitro cytotoxicity towards cisplatin-resistant cell lines. Among the organopalladium derivatives, those bearing at least one N-heterocyclic carbene ligand (NHC) and the Pd(II)-η³-allyl fragment have exhibited IC₅₀ values in the micro and sub-micromolar range towards several cancer cell lines in vitro and in some cases selectivity towards cancerous vs. non-tumorigenic cells. Herein, a selection of allyl and indenyl palladates were synthesized using a solvent-free method consisting of grinding the corresponding palladium precursors with different saturated and unsaturated azolium salts. All compounds have been fully characterized by NMR, XRD and elemental analyses. The intramolecular H, Cl interaction has been elucidated and quantified using the Voronoi Deformation Density scheme. Most of the complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with I₅₀ values comparable to or even lower than cisplatin. Interestingly, the potent anticancer activity was also confirmed in a high-serous ovarian cancer (HGSOC) patient-derived tumoroid, with a clear superiority of this class of compounds over classical platinum-based agents. Finally, preliminary enzyme inhibition studies of the synthesized palladate complexes against the model TrxR show that the compounds have high activity comparable to or even higher than auranofin and classical Au(I) NHC complexes. Based on such promising data, further in vitro and in vivo experiments and in-depth mechanistic studies are ongoing in our laboratories.

Keywords: anticancer activity, palladium complexes, organoids, indenyl and allyl ligands

Procedia PDF Downloads 68
89 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells

Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard

Abstract:

Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.

Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics

Procedia PDF Downloads 213
88 Determination of in vitro Antioxidative Activity of Aster yomena (Kitam.) Honda

Authors: Hyun Young Kim, Min Jung Kim, Ji Hyun Kim, Sanghyun Lee, Eun Ju Cho

Abstract:

Oxidative stress that results from overproduction of free radicals can lead to pathogenesis of human diseases including cancer, neurodegenerative diseases, and cardiovascular disease. Aster yomena (Kitam.) Honda (A. yomena) belonging to Compositae family is a perennial plant, and it has anti-inflammatory, anti-asthmatic and anti-obesity effects. In this study, we investigated the antioxidative effect of A. yomena by measuring 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (˙OH) and superoxide radical (O₂⁻) scavenging activities in vitro. A. yomena was extracted with ethanol and then partitioned with n-hexane, methylene chloride (CH₂Cl₂), ethyl acetate (EtOAc) and n-butanol (n-BuOH). In DPPH radical scavenging assay, the concentration of A. yomena from 10 to 100μg/mL dose-dependently raised the inhibition of DPPH oxidation. Especially, EtOAc fraction of A. yomena showed the highest DPPH radical scavenging activity among other fractions. The ˙OH radical scavenging activities of the extract and four fractions of A. yomena were increased by over 80% at a concentration of 50μg/mL. Especially, the IC50 value of EtOAc fraction was 0.03 μg/mL that is the lowest value compared with the values of other fractions. In addition, we found that the EtOAc fraction of A. yomena was showed to be better at O₂⁻ radical scavenging than other fractions. Taken together these results, we suggested that A. yomena, especially EtOAc fraction, can be used as a natural antioxidant against free radicals. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B03931593).

Keywords: Aster yomena (Kitam.) Honda (A. yomena), free radicals, antioxidant, EtOAc fraction

Procedia PDF Downloads 264
87 Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds

Authors: Howaida I. Abd-Alla, Nagwa M. M. Shalaby

Abstract:

The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals.

Keywords: antimicrobial, antiviral, Fortunella margarita, Nagami Kumkuat, phenolic secondary metabolites

Procedia PDF Downloads 169
86 Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition

Authors: Mayank, Navneet Kaur, Narinder Singh

Abstract:

The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules.

Keywords: BRAF, oncogenic, sorafenib, computational studies

Procedia PDF Downloads 93
85 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 112
84 Prophylactic Effects of Dairy Kluyveromyces marxianus YAS through Overexpression of BAX, CASP 3, CASP 8 and CASP 9 on Human Colon Cancer Cell Lines

Authors: Amir Saber Gharamaleki, Beitollah Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi

Abstract:

Colorectal cancer (CRC) is one of the most prevalent cancers and intestinal microbial community plays an important role in colorectal tumorigenesis. Probiotics have recently been assessed as effective anti-proliferative agents and thus this study was performed to examine whether CRC undergo apoptosis by treating with isolated Iranian native dairy yeast, Kluyveromyces marxianus YAS, secretion metabolites. The cytotoxicity assessments on cells (HT-29, Caco-2) were accomplished through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as qualitative DAPI (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments) evaluations of apoptosis. To evaluate the main mechanism of apoptosis, Real time PCR method was applied. Kluyveromyces marxianus YAS secretions (IC50) showed significant cytotoxicity against HT-29 and Caco-2 cancer cell lines (66.57 % and 66.34 % apoptosis) similar to 5-Fluorouracil (5-FU) while apoptosis only was developed in 27.57 % of KDR normal cells. The prophylactic effects of Kluyveromyces marxianus (PTCC 5195), as a reference yeast, was not similar to Kluyveromyces marxianus YAS indicating strain dependency of bioactivities on CRC disease prevention. Based on real time PCR results, the main cytotoxicity is related to apoptosis phenomenon and the core related mechanism is depended on the overexpression of BAX, CASP 9, CASP 8 and CASP 3 inducing apoptosis genes. However, several investigations should be conducted to precisely determine the effective compounds to be used as anticancer therapeutics in the future.

Keywords: anticancer, anti-proliferative, apoptosis, cytotoxicity, yeast

Procedia PDF Downloads 300
83 Isolation and Elimination of Latent and Productive Herpes Simplex Virus from the Sacral and Trigeminal Ganglions

Authors: Bernard L. Middleton, Susan P. Cosgrove

Abstract:

There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to anti-herpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in the viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus.

Keywords: synergy pharmaceuticals, herpes treatment, herpes cure, synergy pharmaceuticals treatment

Procedia PDF Downloads 213
82 Osteoprotective Effect of Lawsonia inermis

Authors: Suraj Muke, Vikas Mankumare, Sadhana Sathaye

Abstract:

Osteoporosis is the most common metabolic bone disease which affects an estimated 25 million people worldwide, leading to 1 million fractures, 40,000 annual deaths and health costs of billions of dollars. It is estimated that about 80% of total osteoporosis patients are women, amongst which majority are above the age of 45 years. Postmenopausal osteoporosis is associated with lack of intestinal calcium absorption, increasing pro-oxidant and inflammatory mediators. Lawsonia inermis is a biennial dicotyledonous herbaceous shrub is reported to possess a high flavonoid, high phenolic and Inhibitors of osteoclastogenesis like Daphneside and Daphnorin. The present study aimed to screen osteoprotective effect of methanolic extract of Lawsonia inermis (LIM) in rat model along with its antioxidant activity. LIM shows phenolic content 146.3Milligrams of Gallic acid equivalent present per gram of extract and 19.8 Milligrams of rutin per gram of extract of Total flavonoid content with IC50 value 42.99μg/ml. bilateral ovariectomized rat model in which Healthy female wistar rats were used for screening. Treatment with LIM was carried out using graded doses of 25mg/kg, 50mg/kg and 100mg/kg for period of 28 days. The negative control group comprised of ovariectomized rats along with saline treatment for four weeks whereas sham operated rats were used as positive control.LIM showed a decrease in bone turnover by preventing loss of urinary calcium and phosphorous moreover it decreased the alkaline phosphatase levels and loss of bone density is prevented by LIM suggesting decrease in osteoclast activity.

Keywords: antioxidant, osteoclast, osteoporosis, ovariectomized

Procedia PDF Downloads 381
81 Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B

Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben

Abstract:

Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes.

Keywords: Coula edulis, antioxidant, scavenging activity, amylase, invertase

Procedia PDF Downloads 319
80 In Vitro Antioxidant and Free Radical Scavenging Activity of Phyllanthus Emblica L. Extract

Authors: Benyapa Suksuwan

Abstract:

Introduction: Oxidative stress is identified as the root cause of the development and progression of several diseases as the disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Aim of the Study: This study focused on the antioxidant activity of polyphenols extracted from Phyllanthus Emblica L. as oxidative stress plays a vital role in developing and progressing many diseases, including cardiovascular diseases and cancer. Materials and Methods: The plant was extracted using a mixture solvent (ethyl alcohol: water in ratio 8:2). The total phenolic content of P. Emblica extract was determined using the Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE) and various antioxidant assays DPPH and ABTS radical scavenging capacity assays. Results and Discussion: The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, the IC₅₀ of P. Emblica extract via DPPH and ABTS assays were 68.10 μg/mL ± 0.455, and 49.24 μg/mL ± 0.716, respectively. Furthermore, P. Emblica extract showed antioxidant activities in a concentration-dependent manner. Vitamin C was used as a positive control in the DPPH assay, while Trolox was used as a positive control in the ABTS assay. Conclusions: In conclusion, P. Emblica extract consisted of a high amount of total phenolic content, which possesses potent antioxidant activity. However, further antioxidant activity assays using human cell lines such as SOD, ROS, and RNS scavenging assays and in vitro antioxidant experiments should be performed in order.

Keywords: antioxidant, ABTS scavenging, DPPH scavenging assay, total phenol contents assay, Phyllanthus Emblica L

Procedia PDF Downloads 174
79 The Activity of Polish Propolis and Cannabidiol Oil Extracts on Glioblastoma Cell Lines

Authors: Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Justyna Moskwa, Krystyna Gromkowska-Kepka, Konrad Mielcarek, Patryk Nowakowski, Katarzyna Socha, Anna Puscion-Jakubik, Maria H. Borawska

Abstract:

Glioblastoma (grade IV WHO) is a rapidly progressive brain tumor with very high morbidity and mortality. The vast malignant gliomas are not curable despite the therapy (surgical, radiotherapy, chemotherapy) and patients seek alternative or complementary treatments. Patients often use cannabidiol (CBD) oil as an alternative therapy of glioblastoma. CBD is one of the cannabinoids, an active component of Cannabis sativa. THC (Δ9-tetrahydrocannabinol) can be addictive, and in many countries CBD oil without THC ( < 0,2%) is available. Propolis produced by bees from the resin collected from trees has antiglioma properties in vitro and can be used as a supplement in complementary therapy of gliomas. The aim of this study was to examine the influence of extract from CBD oil in combination with propolis extract on two glioblastoma cell lines. The MTT (Thiazolyl Blue Tetrazolium Bromide) test was used to determine the influence of CBD oil extract and polish propolis extract (PPE) on the viability of glioblastoma cell lines – U87MG and LN18. The cells were incubated (24, 48 and 72 h) with CBD oil extract and PPE. CBD extract was used in concentration 1, 1.5 and 3 µM and PPE in 30 µg/mL. The data were presented compared to the control. The statistical analysis was performed using Statistica v. 13.0 software. CBD oil extract in concentrations 1, 1.5 and 3 µM did not inhibit the viability of U87MG and LN18 cells (viability more than 90% cells compared to the control). There was no dose-response viability, and IC50 value was not recognized. PPE in the concentration of 30 µg/mL time-dependently inhibited the viability of U87MG and LN18 cell line (after 48 h the viability as a percent of the control was 59,7±6% and 57,8±7%, respectively). In a combination of CBD with PPE, the viability of the treated cells was similar to PPE used alone (58,2±7% and 56,5±9%, respectively). CBD oil extract did not show anti-glioma activity and in combination with PPE did not change the activity of PPE.

Keywords: anticancer, cannabidiol, cell line, glioblastoma

Procedia PDF Downloads 212
78 Biochemical and Pomological Variability among 14 Moroccan and Foreign Cultivars of Prunus dulcis

Authors: H. Hanine, H. H'ssaini, M. Ibno Alaoui, A. Nablousi, H. Zahir, S. Ennahli, H. Latrache, H. Zine Abidine

Abstract:

Biochemical and pomological variability among 14 cultivars of Prunus dulcis planted in a germoplasm collection site in Morocco were evaluated. Almond samples from six local and eight foreign cultivars (France, Italy, Spain, and USA) were characterized. Biochemical and pomological data revealed significant genetic variability among the 14 cultivars; local cultivars exhibited higher total polyphenol content. Oil content ranged from 35 to 57% among cultivars; both Texas and Toundout genotypes recorded the highest oil content. Total protein concentration from select cultivars ranged from 50 mg/g in Ferraduel to 105 mg/g in Rizlane1 cultivars. Antioxidant activity of almond samples was examined by a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging assay; the antioxidant activity varied significantly within the cultivars, with IC50 (the half-maximal inhibitory concentration) values ranging from 2.25 to 20 mg/ml. Autochthonous cultivars originated from the Oujda region exhibited higher tegument total polyphenol and amino acid content compared to others. The genotype Rizlane2 recorded the highest flavonoid content. Pomological traits revealed a large variability within the almond germplasms. The hierarchical clustering analysis of all the data regarding pomological traits distinguished two groups with some particular genotypes as distinct cultivars, and groups of cultivars as polyclone varieties. These results strongly exhibit a potential use of Moroccan-originated almonds as potential clones for future selection due to their nutritional values and pomological traits compared to well-established cultivars.

Keywords: antioxidant activity, DDPH, Moroccan almonds, Prunus dulcis

Procedia PDF Downloads 211
77 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer

Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam

Abstract:

Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.

Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations

Procedia PDF Downloads 99
76 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt

Authors: Ahmed Samy Elnoby

Abstract:

Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.

Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity

Procedia PDF Downloads 145
75 Anticancer Lantadene Derivatives: Synthesis, Cytotoxic and Docking Studies

Authors: A. Monika, Manu Sharma, Hong Boo Lee, Richa Dhingra, Neelima Dhingra

Abstract:

Nuclear factor-κappa B serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. Inflammation has been recognized as a hallmark and cause of cancer. Natural products present a privileged source of inspiration for chemical probe and drug design. Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of the metabolites like Lantadene (pentacyclic triterpenoids) from the weed Lantana camara has been known to inhibit cell division and showed anti-antitumor potential. The C-3 aromatic esters of lantadenes were synthesized, characterized and evaluated for cytotoxicity and inhibitory potential against Tumor necrosis factor alpha-induced activation of Nuclear factor-κappa B in lung cancer cell line A549. The 3-methoxybenzoyloxy substituted lead analogue inhibited kinase activity of the inhibitor of nuclear factor-kappa B kinase in a single-digit micromolar concentration. At the same time, the lead compound showed promising cytotoxicity against A549 lung cancer cells with IC50 ( half maximal inhibitory concentration) of 0.98l µM. Further, molecular docking of 3-methoxybenzoyloxy substituted analogue against Inhibitor of nuclear factor-kappa B kinase (Protein data bank ID: 3QA8) showed hydrogen bonding interaction involving oxygen atom of 3-methoxybenzoyloxy with the Arginine-31 and Glutamine-110. Encouraging results indicate the Lantadene’s potential to be developed as anticancer agents.

Keywords: anticancer, lantadenes, pentacyclic triterpenoids, weed

Procedia PDF Downloads 133
74 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris

Authors: Mthokozisi Simelane

Abstract:

Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.

Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate

Procedia PDF Downloads 180
73 Protective Effect of Celosia Argentea Leaf Extract on Cadmium Induced Toxicity and Oxidative Stress in Rats

Authors: Sulyman Abdulhakeem Olarewaju, S. O. Malomo, M. T. Yakubu, J. O. Akolade

Abstract:

The ameliorative effect of Celosia argentea var. cristata leaf extract against cadmium (Cd) induced oxidative stress and toxicity in selected tissues of rats was investigated. Toxicity coupled with oxidative stress was induced in rats by oral administration of Cd (8 mg/kg b. wt). Preliminary quantitative phytochemical and in vitro antioxidant analyses showed that the methanolic extract of C. argentea leaves was constituted by polyphenols (5.72%), saponins (3.20%), tannins (0.65%) and cadenolides (0.006%). IC50 of 9800, 7406, and 45.04 μg/ml were recorded for inhibition of linoleic acid oxidation, 2, 2-diphenyl-1-picrylhydrazyl and hydrogen peroxide radicals respectively. Simultaneous administration of C. argentea leaf extract with Cd significantly attenuated Cd-induced elevation of serum enzyme markers such as aspartate and alanine transaminase, alkaline and acid phosphatase as well as γ-glutaryltransferase in a dose-dependent fashion, while their reduced level in the liver were significantly increased. Higher levels of enzymatic antioxidants; superoxide dismutase and catalase activities were observed in the liver, brain, kidney and testes of the Cd-induced rats treated with C. argentea extract, while lipid peroxidation expressed in malondialdehyde concentrations were lower when compared to values in rats administered Cd only. Other Cd-induced toxicity and stress markers in the serum viz. reduced uric acid and albumin levels as well as elevated total and unconjugated bilirubin were attenuated by the extract and their values compared favorably with those animals co-administered cadmium with ascorbic acid. Data from the study showed that oral administration of extract from the leaf C. argentea may ameliorate Cd-induced oxidative stress and toxicity in rats.

Keywords: toxicity, cadmium, celosia, antioxidants, oxidative stress

Procedia PDF Downloads 300
72 The Influence of Amygdalin on Glioblastoma Multiforme Cell Lines

Authors: Sylwia K. Naliwajko, Justyna Moskwa, Patryk Nowakowski, Renata Markiewicz-Zukowska, Krystyna Gromkowska-Kepka, Anna Puscion-Jakubik, Maria H. Borawska

Abstract:

Amygdalin is found in many fruit seeds, including apricot, peach, quince, apples, and almonds. Amygdalin (also named vitamin B17), as well as its sources, are commonly used as an alternative therapy or prevention of cancer. The potential activity of amygdalin is related to its enzymatic degradation to the hydrogen cyanide. Hydrogen cyanide is a toxic substance that causes liver and nerves damage, fever, coma or even death. Amygdalin is much better tolerated after intravenous than oral administration. The aim of this study was to examine the influence of amygdalin on glioblastoma multiforme cell lines. Three glioblastoma multiforme cell lines – U87MG, T98, LN18 were incubated (48 h) with amygdalin in concentrations 100, 250, 500, 1000 and 2000 µg/mL. The MTT (Thiazolyl Blue Tetrazolium Bromide) test and DNA binding test by [3H]-thymidine incorporation were used to determine the anti-proliferative activity of amygdalin. The secretion of metalloproteinases (MMP2 and MMP-9) from U87MG cells was estimated by gelatin zymography. The statistical analysis was performed using Statistica v. 13.0 software. The data was presented as a % of control. Amygdalin did not show significant inhibition of viability of all the glioblastoma cells in concentrations 100, 250, 500, 1000 µg/mL. In 2000 µg/mL there were significant differences compared to the control, but inhibition of viability was less than 20% (more than 80% of control). The average viability of U87MG cells was 92,0±4%, T98G: 85,8±3% and LN18: 94,7±2% of the control. There was no dose-response viability, and IC50 value was not recognized. DNA binding in U87MG cells was not inhibited (109,0±3 % of control). After treatment with amygdalin, we observed significantly increased secretion of MMP2 and MMP9 in U87MG cells (130,3±14% and 112,0±5% of control, respectively). Our results suggest that amygdalin has no anticancer activity in glioblastoma cell lines.

Keywords: amygdalin, anticancer, cell line, glioblastoma

Procedia PDF Downloads 184