Search results for: Ben Brahim Mounir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 121

Search results for: Ben Brahim Mounir

31 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw

Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar

Abstract:

Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.

Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior

Procedia PDF Downloads 140
30 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller

Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi

Abstract:

The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.

Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling

Procedia PDF Downloads 271
29 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator

Procedia PDF Downloads 364
28 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia

Authors: Sopian Brahim, Mohd Suhaimi Mohamad, Ezarina Zakaria, Norulhuda Sarnon

Abstract:

This study aims to explore the practical experience of child welfare case workers and professionalism in the child case management in Malaysia. This paper discusses the specific social work practice competency and challenges faced by child caseworkers in the fieldwork. This research is qualitative with Grounded Theory approach. Four sessions of Focused Group Discussion (FGD) have been conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. Knowledge in child case management, 2. Professional values of caseworkers towards children, 3. skills in managing cases, and 4. Culturally competence practice in child case managemenr. In addition, major challenges faced in the child case management are the capacity and commitment of the family in children's rehabilitation program, the credibility of the case worker are being challenge and challenges in support system from intra and inter-agency. This study is important for policy makers to take into account the capacity and needs of the child's case worker in accordance with national social work competency framework thereby improving case management services for children more systematically in line with national standards.

Keywords: social work practice, child case management, competency-based knowledge, professionalism

Procedia PDF Downloads 300
27 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: thermal energy storage, phase change material, melting, solidification

Procedia PDF Downloads 317
26 Cytotoxic, Antimicrobial and Antiviral Activities of Acovenoside A: A Cardenolide Isolated from an Egyptian Cultivar of Acokanthera spectabilis Leaves

Authors: Howaida I. Abd-Alla, Amal Z. Hassan, Maha Soltan, Atef G. Hanna, Mounir M. El-Safty

Abstract:

Acokanthera oblongifolia (Apocynaceae) is used for treatment of several infection diseases and is a well-known cardiac glycoside-containing plant. The infusion of their leaves is gargled to treat tonsillitis and is used medicinally to treat snakebites. The total cardiac glycosides content in the leaves was determined by referring to gitoxigenin as a reference compound. Two triterpenes, lup-20(29)-en-3β-ol (1) and oleanolic acid (2); two cardenolides, acovenoside A (3) and acobioside A (4) were isolated from the ethyl acetate extract. Their structures were determined on the basis of spectral analysis. Major constituents isolated from this species were evaluated for cytotoxicity against normal lung cell line (Wi38) and antimicrobial activities against Gram-positive (two strains) and Gram-negative bacteria (four strains), yeast-like fungi (two strains) and fungi (five strains). The minimum inhibitory concentration (MIC) of the compounds was determined using broth microdilution method. Their viral inhibitory effects against avian influenza virus type A (AI-H5N1) and Newcastle disease virus (NDV) in specific pathogen free (SPF) embryonated chicken eggs (ECE), chicken embryo fibroblasts (CEF) and Vero cells were evaluated. The cardenolide (3) showed viral inhibitory effects against AI-H5N1 and NDV in SPF ECE. The two cardenolides isolated have shown potent cytotoxicity against Vero cells. Compound (3) showed potent anti-Gram-negative bacteria activity. These results suggested that acovenoside A might be promising for future antiviral and antimicrobial drug design.

Keywords: Acokanthera, AI-H5N1, Cardenolides, NDV, SPF-ECE, VERO, Wi38 , Microbe

Procedia PDF Downloads 141
25 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator

Procedia PDF Downloads 454
24 Senior Entrepreneurship and the Takeover of Family Businesses: The Case of Moroccan Family-Owned Small Medium-Sized Enterprises

Authors: Brahim Ouzaka, Said Ouhadi

Abstract:

Family businesses (FB) represent the oldest and most resilient form of organization. However, they are weakened by problems of entrepreneurial discontinuity. The objective of this paper is to analyze the problem of the succession of FBs created by senior entrepreneurs. This study analyzes and explores the constructs of senior entrepreneurship and the strategy and takeover policies of the Moroccan Family owned Small and Medium-Sized Businesses. Our main research question is formulated as follows: how does senior entrepreneurship promote the takeover of Moroccan family SMEs? So we aim through this study to analyze the challenge of the takeover of the FB created by senior entrepreneurs in order to explore and understand the specificities, choices and strategies as well as the reality of the takeover process among this category of senior entrepreneurs. After a review of the literature on the relationship between the constructs of senior entrepreneurship and the takeover of FBs, the empirical study will consist of an exploratory qualitative approach of 3 family SMEs created by senior entrepreneurs and subsequently transmitted to their descendants. This qualitative research serves to explore the choices, the strategies as well as the specificities of the entrepreneurial acts and processes of this category of entrepreneurs. The interviews were conducted with senior entrepreneurs and successors of three Moroccan family SMEs, focusing on the specificity of entrepreneurial actions and strategies in the case of SMEs launched by senior entrepreneurs and on the reality of the conduct and preparation of the takeover process, the methods of socialization and training of buyers in the context of these companies.

Keywords: senior entrepreneurship, family SME, family business, takeover

Procedia PDF Downloads 60
23 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 118
22 The Palm Oil in Food Products: Frequency of Consumption and Composition

Authors: Kamilia Ounaissa, Sarra Fennira, Asma Ben Brahim, Marwa Omri, Abdelmajid Abid

Abstract:

The palm oil is the vegetable oil the most used by the food-processing industry in the world. It is chosen for its economic and technologic advantages. However, this oil arouses the debate because of its high content in saturated fatty acids, which are fats promoting atherosclerosis. Purposes of the work: To study the frequency and the rate of consumption of industrial products containing some palm oil and specify the rate of this oil in certain consummated products. Methodology: We proceeded to a consumer survey using a questionnaire collecting a list of food containing the palm oil, sold on the Tunisian market. We then analyzed the most consumed food to specify their fat content by “Soxhelt’s” method. Finally, we studied the composition in various fatty acids of the extracted fat using the chromatography in the gas phase (CPG) Results: Our results show that investigated individuals having a normal weight have a more important and more frequent consumption of products rich in palm oil than overweight subjects. The most consumed foods are biscuits, cakes, wafers, chocolates, chips, cereal, creams to be spread and canned pilchard. The content in palm oil of these products varies from 10 % to 31 %. The analysis by CPG showed an important content in saturated fatty acid, in particular in palmitic acid, ranging from 40 % to 63 % of the fat of these products. Conclusion: Our study shows a high frequency of consumption of food products, the analysis of which proved a high content in palm oil. Theses facts justifies the necessity of a regulation of the use of palm oil in food products and the application of a label detailing the type and fat rates used.

Keywords: palm oil, palmitic acid, food industry, fatty acids, atherosclerosis

Procedia PDF Downloads 511
21 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis

Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis

Abstract:

Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.

Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity

Procedia PDF Downloads 387
20 Fundamentals of Mobile Application Architecture

Authors: Mounir Filali

Abstract:

Companies use many innovative ways to reach their customers to stay ahead of the competition. Along with the growing demand for innovative business solutions is the demand for new technology. The most noticeable area of demand for business innovations is the mobile application industry. Recently, companies have recognized the growing need to integrate proprietary mobile applications into their suite of services; Companies have realized that developing mobile apps gives them a competitive edge. As a result, many have begun to rapidly develop mobile apps to stay ahead of the competition. Mobile application development helps companies meet the needs of their customers. Mobile apps also help businesses to take advantage of every potential opportunity to generate leads that convert into sales. Mobile app download growth statistics with the recent rise in demand for business-related mobile apps, there has been a similar rise in the range of mobile app solutions being offered. Today, companies can use the traditional route of the software development team to build their own mobile applications. However, there are also many platform-ready "low-code and no-code" mobile apps available to choose from. These mobile app development options have more streamlined business processes. This helps them be more responsive to their customers without having to be coding experts. Companies must have a basic understanding of mobile app architecture to attract and maintain the interest of mobile app users. Mobile application architecture refers to the buildings or structural systems and design elements that make up a mobile application. It also includes the technologies, processes, and components used during application development. The underlying foundation of all applications consists of all elements of the mobile application architecture; developing a good mobile app architecture requires proper planning and strategic design. The technology framework or platform on the back end and user-facing side of a mobile application is part of the mobile architecture of the application. In-application development Software programmers loosely refer to this set of mobile architecture systems and processes as the "technology stack."

Keywords: mobile applications, development, architecture, technology

Procedia PDF Downloads 74
19 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals

Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby

Abstract:

Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.

Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers

Procedia PDF Downloads 214
18 Place of Surgery in the Treatment of Painful Lumbar Degenerative Disc Disease

Authors: Ghoul Rachid Brahim

Abstract:

Introduction: Back pain is a real public health problem with a significant socio-economic impact. It is the consequence of a degeneration of the lumbar intervertebral disc (IVD). This often asymptomatic pathology is compatible with an active life. As soon as it becomes symptomatic, conservative treatment is recommended in the majority of cases. The physical or functional disability is resistant to well-monitored conservative treatment, which justifies a surgical alternative which imposes a well-studied reflection on the objectives to be achieved. Objective: Evaluate the indication and short and medium term contribution of surgery in the management of painful degenerative lumbar disc disease. To prove the effectiveness of surgical treatment in the management of painful lumbar degenerative disc disease. Materials and methods: This is a prospective descriptive mono-centric study without comparison group, comprising a series of 104 patients suffering from lumbar painful degenerative disc disease treated surgically. Retrospective analysis of data collected prospectively. Comparison between pre and postoperative clinical status, by pain self-assessment scores and on the impact on pre and postoperative quality of life (3, 6 to 12 months). Results: This study showed that patients who received surgical treatment had great improvements in symptoms, function and several health-related quality of life in the first year after surgery. Conclusions: The surgery had a significantly positive impact on patients' pain, disability and quality of life. Overall, 97% of the patients were satisfied.

Keywords: degenerative disc disease, intervertebral disc, several health-related quality, lumbar painful

Procedia PDF Downloads 79
17 Mobile App Architecture in 2023: Build Your Own Mobile App

Authors: Mounir Filali

Abstract:

Companies use many innovative ways to reach their customers to stay ahead of the competition. Along with the growing demand for innovative business solutions is the demand for new technology. The most noticeable area of demand for business innovations is the mobile application industry. Recently, companies have recognized the growing need to integrate proprietary mobile applications into their suite of services; Companies have realized that developing mobile apps gives them a competitive edge. As a result, many have begun to rapidly develop mobile apps to stay ahead of the competition. Mobile application development helps companies meet the needs of their customers. Mobile apps also help businesses to take advantage of every potential opportunity to generate leads that convert into sales. Mobile app download growth statistics with the recent rise in demand for business-related mobile apps, there has been a similar rise in the range of mobile app solutions being offered. Today, companies can use the traditional route of the software development team to build their own mobile applications. However, there are also many platform-ready "low-code and no-code" mobile apps available to choose from. These mobile app development options have more streamlined business processes. This helps them be more responsive to their customers without having to be coding experts. Companies must have a basic understanding of mobile app architecture to attract and maintain the interest of mobile app users. Mobile application architecture refers to the buildings or structural systems and design elements that make up a mobile application. It also includes the technologies, processes, and components used during application development. The underlying foundation of all applications consists of all elements of the mobile application architecture, developing a good mobile app architecture requires proper planning and strategic design. The technology framework or platform on the back end and user-facing side of a mobile application is part of the mobile architecture of the application. In-application development Software programmers loosely refer to this set of mobile architecture systems and processes as the "technology stack".

Keywords: mobile applications, development, architecture, technology

Procedia PDF Downloads 64
16 A Framework for Secure Information Flow Analysis in Web Applications

Authors: Ralph Adaimy, Wassim El-Hajj, Ghassen Ben Brahim, Hazem Hajj, Haidar Safa

Abstract:

Huge amounts of data and personal information are being sent to and retrieved from web applications on daily basis. Every application has its own confidentiality and integrity policies. Violating these policies can have broad negative impact on the involved company’s financial status, while enforcing them is very hard even for the developers with good security background. In this paper, we propose a framework that enforces security-by-construction in web applications. Minimal developer effort is required, in a sense that the developer only needs to annotate database attributes by a security class. The web application code is then converted into an intermediary representation, called Extended Program Dependence Graph (EPDG). Using the EPDG, the provided annotations are propagated to the application code and run against generic security enforcement rules that were carefully designed to detect insecure information flows as early as they occur. As a result, any violation in the data’s confidentiality or integrity policies is reported. As a proof of concept, two PHP web applications, Hotel Reservation and Auction, were used for testing and validation. The proposed system was able to catch all the existing insecure information flows at their source. Moreover and to highlight the simplicity of the suggested approaches vs. existing approaches, two professional web developers assessed the annotation tasks needed in the presented case studies and provided a very positive feedback on the simplicity of the annotation task.

Keywords: web applications security, secure information flow, program dependence graph, database annotation

Procedia PDF Downloads 439
15 Design and Synthesis of Some Pyrimidine Derivatives as Bruton’s Tyrosine Kinase Inhibitors for Hematologic Malignancies

Authors: Ibrahim M. Labouta, Gina N. Tageldin, Salwa M. Fahmy, Hayam M. Ashour, Mounir A. Khalil, Tamer M. Ibrahim, Nefertiti A. El-Nikhely

Abstract:

Bruton’s tyrosine kinase (BTK) is a critical effector molecule in B cell antigen receptor (BCR) signaling transduction. It regulates B cell proliferation, development and survival. Since BTK is widely expressed in many B cell leukaemias and lymphomas, targeting BTK by small molecules inhibitors became an attractive idea as new treatment modalities for B cell mediated hematologic malignancies. Ibrutinib is the 1st generation BTK inhibitor, approved by FDA for treatment of relapsed mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). It binds irreversibly to the unique cysteine (Cys481) within the ATP-binding pocket of BTK. Besides ibrutinib, many irreversible covalent BTK inhibitors comprising pyrimidine nucleus such as spebrutinib (phase IIb) showed high selectivity and potency when compared to it. In this study, the designed compounds were based on 5-cyano-2-methylsulfanyl pyrimidine core and decorated with electrophilic warheads which are essential for the optimal activity for targeted covalent inhibition (TCI). However, modifications at pyrimidine C4 or C6 were made by introduction of substituted amines which are provided to behave differently. The synthesized derivatives were evaluated for their anticancer activity in leukemia cell lines (e.g. THP-1). Results showed that, some derivatives exhibited antiproliferative activity with IC50 ranged from 5-50 μM, The in vitro enzymatic inhibitory assay for these compounds against BTK is still under investigation. Nevertheless, we could conclude from the initial biological screening that, the synthesized 4 or 6-subsitituted aminopyrimidines represent promising and novel antileukemic agents. Meanwhile, further studies are still needed to attribute this activity through targeting BTK enzyme and inhibition of BCR signaling pathway.

Keywords: BTK inhibitors, hematologic malignancies, structure based drug design (SBDD), targeted covalent inhibitors (TCI)

Procedia PDF Downloads 120
14 The Effect of War on Spatial Differentiation of Real Estate Values and Urban Disorder in Damascus Metropolitan Area

Authors: Mounir Azzam, Valerie Graw, Andreas Rienow

Abstract:

The Syrian war, which commenced in 2011, has resulted in significant changes in the real estate market in the Damascus metropolitan area, with rising levels of insecurity and disputes over tenure rights. The quest for spatial justice is, therefore, imperative, and this study performs a spatiotemporal analysis to investigate the impact of the war on real estate differentiation. Using the hedonic price models including 2,411 housing transactions over the period 2010-2022, this study aims to understand the spatial dynamics of the real estate market in wartime. Our findings indicate that war variables have had a significant impact on the differentiation and depreciation of property prices. Notably, property attributes have a more substantial impact on real estate values than district location, with severely damaged buildings in Damascus city resulting in an 89% decline in prices, while prices in Rural Damascus districts have decreased by 50%. Additionally, this study examines the urban texture of Damascus using correlation and homogeneity statistics derived from the gray-level co-occurrence matrix obtained from Google Earth Engine. We monitored 250 samples from hedonic datasets within three different years of the Syrian war (2015, 2019, and 2022). Our findings show that correlation values were highly differentiated, particularly among Rural Damascus districts, with a total decline of 87.2%. While homogeneity values decreased overall between 2015 and 2019, they improved slightly after 2019. The findings have valuable implications, not only for investment prospects in setting up a successful reconstruction strategy but also for spatial justice of property rights in strongly encouraging sustainable real estate development.

Keywords: hedonic price, real estate differentiation, reconstruction strategy, spatial justice, urban texture analysis

Procedia PDF Downloads 48
13 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 348
12 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses

Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty

Abstract:

Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).

Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady

Procedia PDF Downloads 175
11 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 67
10 Histological and Microbiological Study about the Pneumonic Lungs of Calves Slaughtered in the Slaughterhouse of Batna

Authors: Hamza Hadj Abdallah, Brahim Belabdi

Abstract:

Respiratory disease is a dominant pathology in cattle. It causes mortality and especially morbidity and irreversible damage. Although the dairy herd is affected, it is essentially the lactating herd and especially young cattle either nursing or fattening that undergo the greatest economic impact. The objective of this study is to establish a microbiological diagnosis of bovine respiratory inffections from lung presented with gross lesions at the slaughter of Batna. A total of 124 samples (pharyngeal and nasal swabs and lung fragments) from 31 seven months old calves, with lung lesions was collected to determine possible correlations between etiologic agents and lesion types. The hépatisation injury (or consolidation) was the major lesion (45.17%) preferentially localized in the right apical lobe. A diverse microbial flora (15 genera and 291 strains was isolated. The bacteria most frequently isolated are the Enterobacteriaceae (49.45%), Staphylococci (25.1%) followed by non Enterobacteriaceae bacilli represented by Pseudomonas (5.83%) and finally, Streptococcus (13.38 %). The pneumotropic bacteria (Pasteurellaaerogenes and Pasteurellapneumotropica) were isolated at a rate of 0.68%. The study of the sensitivity of some germs to antibiotics showed a sensitivity of 100% for ceftazidime. A very high sensitivity was also observed for kanamycin, Ciprofloxacin, Imepinem, Cefepime, Tobramycin and Gentamycin (between 90% and 97%). Strains of E. coli showed a sensitivity of 100% for Imepinem, while only 55.9% of the strains were sensitive to Ampicillin. The isolated Pasteurella exhibited excellent sensitivity (100%) for the antimicrobials used with the exception of Colistin and Ticarcillin-Clavulanic acid association which showed a sensitivity of 50%.This survey has demonstrated the strong spread of atypical pneumonia in cattle population (bulls) at the slaughterhouse of Batna justifying stunting and losses in cattle farms in the region.Thus, it was considered urgent to establish a profile of sensitivity of different germs to antibiotics isolated to limit this increasingly dreadful infection.

Keywords: Pasteurella, enterobacteria, bacteriology, pneumonia

Procedia PDF Downloads 186
9 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 116
8 Forensic Entomology in Algeria

Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa

Abstract:

Forensic entomology is the use of insects and their arthropod relatives as silent witnesses to aid legal investigations by interpreting information concerning a death. The main purpose of forensic entomology is to establish the postmortem interval or PMI Postmortem interval is a matter of crucial importance in the investigations of homicide and other untimely deaths when the body found is after three days. Forensic entomology has grown immensely as a discipline in the past thirty years. In Algeria, forensic entomology was introduced in 2010 by the National Institute for Criminalistics and Criminology of the National Gendarmerie (NICC). However, all the work that has been done so far in this growing field in Algeria has been unknown at both the national and international levels. In this context, the aim of this paper is to describe the state of forensic entomology in Algeria. The Laboratory of Entomology of the NICC is the only one of its kind in Algeria. It started its activities in 2010, consisting of two specialists. The main missions of the laboratory are estimation of the PMI by the analysis of entomological evidence, and determination if the body was moved. Currently, the laboratory is performing different tasks such as the expert work required by investigators to estimate the PMI using the insects. The estimation is performed by the accumulated degree days method (ADD) in most of the cases except for those where the cadaver is in dry decay. To assure the quality of the entomological evidence, crime scene personnel are trained by the laboratory of Entomology of the NICC. Recently, undergraduate and graduate students have been studying carrion ecology and insect activity in different geographic locations of Algeria using rabbits and wild boar cadavers as animal models. The Laboratory of Entomology of the NICC has also been involved in some of these research projects. Entomotoxicology experiments are also conducted with the collaboration of the Toxicology Department of the NICC. By dint of hard work that has been performed by the Laboratory of Entomology of the NICC, official bodies have been adopting more and more the use of entomological evidence in criminal investigations in Algeria, which is commendable. It is important, therefore, that steps are taken to fill in the gaps in the knowledge necessary for entomological evidence to have a useful future in criminal investigations in Algeria.

Keywords: forensic entomology, corpse, insects, postmortem interval, expertise, Algeria

Procedia PDF Downloads 373
7 Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies

Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev

Abstract:

Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.

Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds

Procedia PDF Downloads 330
6 Flexural Properties of Typha Fibers Reinforced Polyester Composite

Authors: Sana Rezig, Yosr Ben Mlik, Mounir Jaouadi, Foued Khoffi, Slah Msahli, Bernard Durand

Abstract:

Increasing interest in environmental concerns, natural fibers are once again being considered as reinforcements for polymer composites. The main objective of this study is to explore another natural resource, Typha fiber; which is renewable without production cost and available abundantly in nature. The aim of this study was to study the flexural properties of composite resin with and without reinforcing Typha leaf and stem fibers. The specimens were made by the hand-lay-up process using polyester matrix. In our work, we focused on the effect of various treatment conditions (sea water, alkali treatment and a combination of the two treatments), as a surface modifier, on the flexural properties of the Typha fibers reinforced polyester composites. Moreover, weight ratio of Typha leaf or stem fibers was investigated. Besides, both fibers from leaf and stem of Typha plant were used to evaluate the reinforcing effect. Another parameter, which is reinforcement structure, was investigated. In fact, a first composite was made with air-laid nonwoven structure of fibers. A second composite was with a mixture of fibers and resin for each kind of treatment. Results show that alkali treatment and combined process provided better mechanical properties of composites in comparison with fiber treated by sea water. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural strength of 69.8 and 62,32 MPa with flexural modulus of 6.16 and 6.34 GPawas observed respectively for composite reinforced with leaf and stem fibers for 12.6 % fiber weight ratio. For the different treatments carried out, the treatment using caustic soda, whether alone or after retting seawater, show the best results because it improves adhesion between the polyester matrix and the fibers of reinforcement. SEM photographs were made to ascertain the effects of the surface treatment of the fibers. By varying the structure of the fibers of Typha, the reinforcement used in bulk shows more effective results as that used in the non-woven structure. In addition, flexural strength rises with about (65.32 %) in the case of composite reinforced with a mixture of 12.6% leaf fibers and (27.45 %) in the case of a composite reinforced with a nonwoven structure of 12.6 % of leaf fibers. Thus, to better evaluate the effect of the fiber origin, the reinforcing structure, the processing performed and the reinforcement factor on the performance of composite materials, a statistical study was performed using Minitab. Thus, ANOVA was used, and the patterns of the main effects of these parameters and interaction between them were established. Statistical analysis, the fiber treatment and reinforcement structure seem to be the most significant parameters.

Keywords: flexural properties, fiber treatment, structure and weight ratio, SEM photographs, Typha leaf and stem fibers

Procedia PDF Downloads 390
5 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 127
4 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 161
3 Acute and Subacute Toxicity of the Aqueous Extract of the Bark Stems of Balanites aegyptiaca (L.) Delile in Wistar Rats

Authors: Brahim Sow

Abstract:

Background: Throughout West Africa, Balanites aegyptiaca (BA), or Zygophyllaceae, is widely used in traditional medicine to treat diabetes, hypertension, inflammation, malaria and liver disorders. In our recent research, we found that BA has nephroprotective potential against diabetes mellitus, hypertension and kidney disorders. However, to our knowledge, no systematic studies have been carried out on its derivative (toxicity) profile. Aim of the study: The study was conducted to assess the potential potency of the hydroalcoholic extract of BA bark in rats by the acute and sub-acute oral route. Materials and methods: Male and female rats in the acute depression study received BA extract orally at single doses of 500 mg/kg, 2000 mg/kg, 3000 mg/kg and 5000 mg/kg (n = 6 per group/sex). To assess acute depression, abnormal behaviour, toxic symptoms, weight and death were observed for 14 consecutive days. For the subacute impairment study, Wistar rats received the extract orally at doses of 125, 250 and 500 mg/kg (n=6 per group/sex) per day for 28 days. Behaviour and body weight were monitored daily. At the end of the treatment period, biochemical, haematological and histopathological examinations were performed, and gross and histopathological examinations of several organs were carried out. To determine the presence or absence of phytochemicals, the BA extract was subjected to gage phage chromatographic examination. Results: The absence of absorption chromatography of BA indicates the absence of cyanide groups. This suggests that the BA extract does not contain toxic substances. No mortality or adverse effects were observed at 5000 mg/kg in the acute depression test. With regard to body weight, general behaviour, relative organ weights, haematological and biochemical parameters, BA extract did not induce any mortality or potentially treatment-related effects in the sub-acute study. The normal architecture of the vital organs was revealed by histopathological examination, indicating the absence of morphological alterations. Conclusion: BA extract administered orally for 28 days at doses up to 500 mg/kg did not cause toxicological damage in rats in the present study. The median lethal dose (LD50) of the extract was estimated to be over 5000 mg/kg in an acute hyperglycaemia study.

Keywords: Balanites aegyptiaca L Delile, haematology, biochemistry, rat

Procedia PDF Downloads 45
2 Application of Forensic Entomology to Estimate the Post Mortem Interval

Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa

Abstract:

Forensic entomology has grown immensely as a discipline in the past thirty years. The main purpose of forensic entomology is to establish the post mortem interval or PMI. Three days after the death, insect evidence is often the most accurate and sometimes the only method of determining elapsed time since death. This work presents the estimation of the PMI in an experiment to test the reliability of the accumulated degree days (ADD) method and the application of this method in a real case. The study was conducted at the Laboratory of Entomology at the National Institute for Criminalistics and Criminology of the National Gendarmerie, Algeria. The domestic rabbit Oryctolagus cuniculus L. was selected as the animal model. On 08th July 2012, the animal was killed. Larvae were collected and raised to adulthood. Estimation of oviposition time was calculated by summing up average daily temperatures minus minimum development temperature (also specific to each species). When the sum is reached, it corresponds to the oviposition day. Weather data were obtained from the nearest meteorological station. After rearing was accomplished, three species emerged: Lucilia sericata, Chrysomya albiceps, and Sarcophaga africa. For Chrysomya albiceps species, a cumulation of 186°C is necessary. The emergence of adults occured on 22nd July 2012. A value of 193.4°C is reached on 9th August 2012. Lucilia sericata species require a cumulation of 207°C. The emergence of adults occurred on 23rd, July 2012. A value of 211.35°C is reached on 9th August 2012. We should also consider that oviposition may occur more than 12 hours after death. Thus, the obtained PMI is in agreement with the actual time of death. We illustrate the use of this method during the investigation of a case of a decaying human body found on 03rd March 2015 in Bechar, South West of Algerian desert. Maggots were collected and sent to the Laboratory of Entomology. Lucilia sericata adults were identified on 24th March 2015 after emergence. A sum of 211.6°C was reached on 1st March 2015 which corresponds to the estimated day of oviposition. Therefore, the estimated date of death is 1st March 2015 ± 24 hours. The estimated PMI by accumulated degree days (ADD) method seems to be very precise. Entomological evidence should always be used in homicide investigations when the time of death cannot be determined by other methods.

Keywords: forensic entomology, accumulated degree days, postmortem interval, diptera, Algeria

Procedia PDF Downloads 253