Search results for: AA2024 aluminum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 668

Search results for: AA2024 aluminum

668 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum

Authors: Dunwen Zuo, Yongfang Deng, Bo Song

Abstract:

An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.

Keywords: FSJ, force factor, AA2024 aluminum, friction stir joining

Procedia PDF Downloads 463
667 Investigation of the Cathodic Behavior of AA2024-T3 in Neutral Medium

Authors: Nisrine Benzbiria, Mohammed Azzi, Mustapha Zertoubi

Abstract:

2XXX series of aluminum alloys are widely employed in several applications, such as beverages, automotive, and aerospace industries. However, they are particularly prone to localized corrosion, such as pitting, often induced by a difference in corrosion potential measured for intermetallic phases and pure metal. The galvanic cells comprising Al–Cu– Mn–Fe intermetallic phases control cathodically the dissolution rate as oxygen reduction reaction kinetics are privileged on Al–Cu–Mn–Fe particles. Hence, understanding the properties of cathode sites and the processes involved must be carried out. Our interest is to outline the cathodic behavior of AA2024-T3 in sodium sulfate solution using electrochemical techniques. Oxygen reduction reaction (ORR) was investigated in the mixed charge transfer and mass transport regime using the Koutecky-Levich approach. An environmentally benign inhibitor was considered to slow the ORR on the Cu-rich cathodic phases. The surface morphology of the electrodes was investigated with SEM/EDS and AFM. The obtained results were discussed accordingly.

Keywords: AA2024-T3, neutral medium, ORR kinetics, Koutecky-Levich, DFT

Procedia PDF Downloads 30
666 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis

Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi

Abstract:

The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.

Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation

Procedia PDF Downloads 39
665 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-Layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: combination of aluminum honeycomb panel, rod latticed shell, dynamic performence, response spectrum analysis, seismic properties

Procedia PDF Downloads 454
664 Aluminum Factories, Values and Regeneration Option

Authors: Tereza Bartosikova

Abstract:

This paper describes the values of a specific type of industrial heritage-aluminum factories. It is an especially endangered kind of industrial heritage with only a little attention paid. The paper aims to highlight the uniqueness of these grounds and to specify several options for revitalizations. The research is based on complex aluminum factories mapping in Europe from archives and bibliographic sources and on site. There is analyzed gained information that could offer a new view on the aluminum grounds. Primarily, the data are described according to the works in Žiar nad Hronom, Slovakia. More than a half aluminum grounds have ended up the production, although they can go on further. They are closely connected with some areas identity and their presence has left striking footsteps in the environment. By saving them, the historical continuity, cultural identity of population and also the economic stability of region would be supported.

Keywords: aluminum, industrial heritage, regeneration, values

Procedia PDF Downloads 370
663 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method

Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev

Abstract:

The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.

Keywords: activation energy, aluminum, low temperature diffusion, SiC

Procedia PDF Downloads 256
662 Friction Stir Welding of Aluminum Alloys: A Review

Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra

Abstract:

Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.

Keywords: aluminum alloys, friction stir welding (FSW), microstructure, Properties.

Procedia PDF Downloads 390
661 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

Authors: C. H. S. Vidyasagar, D. B. Karunakar

Abstract:

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

Keywords: mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation

Procedia PDF Downloads 127
660 Experimental Study and Analysis of Parabolic Trough Collector with Various Reflectors

Authors: Avadhesh Yadav, Balram Manoj Kumar

Abstract:

A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed for aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using aluminum sheet as reflector compared to aluminum foil as reflector is 18.98% more.

Keywords: parabolic trough collector, reflectors, air flow rates, solar power, aluminum sheet

Procedia PDF Downloads 342
659 A Review on Aluminium Metal Matric Composites

Authors: V. Singh, S. Singh, S. S. Garewal

Abstract:

Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced engineering materials. Aluminum metal matrix composites (AMMC) refer to the class of light weight high performance material systems. Properties of AMMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. AMMC finds its application in automotive, aerospace, defense, sports and structural areas. This paper presents an overview of AMMC material systems on aspects relating to processing, types and applications with case studies.

Keywords: aluminum metal matrix composites, applications of aluminum metal matrix composites, lighting material processing of aluminum metal matrix composites

Procedia PDF Downloads 434
658 The Mechanical Properties of In-Situ Consolidated Nanocrystalline Aluminum Alloys

Authors: Khaled M. Youssef, Sara I. Ahmed

Abstract:

In this study, artifacts-free bulk nanocrystalline pure aluminum alloy samples were prepared through mechanical milling under ultra-high purity argon and at both liquid nitrogen and room temperatures. The nanostructure evolution during milling was examined using X-ray diffraction and transmission electron microscope techniques. The in-situ consolidated samples after milling exhibited an average grain size of 18 nm. The tensile properties of this novel material are reported in comparison with coarse-grained aluminum alloys. The 0.2% offset yield strength of the nanocrystalline aluminum was found to be 340 MPa. This value is at least one order of magnitude higher than that of the coarse-grained aluminum alloy. In addition to this extraordinarily high strength, the nanocrystalline aluminum showed a significant tensile ductility, with 6% uniform elongation and 11% elongation-to-failure. The transmission electron microscope observations in this study provide evidence of deformation twinning in the plastically deformed nanocrystalline aluminum. These results highlight a change of the deformation mechanism from a typical dislocation slip to twinning deformation induced by partial dislocation activities.

Keywords: nanocrystalline, aluminum, strength, ductility

Procedia PDF Downloads 159
657 Preparation and Characterization of α–Alumina with Low Sodium Oxide

Authors: Gyung Soo Jeon, Hong Bae Kim, Chi Jung Oh

Abstract:

In order to prepare the α-alumina with low content of sodium oxide from aluminum trihydroxide as a reactant, three kinds of methods were employed as follows; the mixture of Chamotte (aggregate composed of silica and alumina), ammonium chloride and aluminum fluoride with aluminum trihydroxide under 1600°C, respectively. The sodium oxide in α-alumina produced above methods was analyzed by XRF and the particle size distribution was determined by particle size analyzer, and the specific surface area of α-alumina was measured by BET method, and phase of α-alumina produced was confirmed by XRD. Acknowledgement: This research was supported by Development Program of Technical Innovation funded by Korea Technology and Information Promotion Agency for SMEs (KTIP-2016-S2401821).

Keywords: α-alumina, sodium oxide, aluminum trihydroxide, Chamotte, ammonium chloride, aluminum fluoride

Procedia PDF Downloads 294
656 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.

Keywords: cutting condition, vibration, natural frequency, decision tree, CART algorithm

Procedia PDF Downloads 313
655 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned

Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh

Abstract:

This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.

Keywords: activity-based costing, activity-based management, construction, architectural aluminum

Procedia PDF Downloads 70
654 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: decision tree forest, GMDH, surface roughness, Taguchi method, turning process

Procedia PDF Downloads 419
653 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: cutting condition, surface roughness, decision tree, CART algorithm

Procedia PDF Downloads 353
652 A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders

Authors: Badr Alsulami, Ahmed S. Elamary

Abstract:

This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders.

Keywords: shear resistance, aluminum, Cardiff theory, Hӧglund's theory, plate girder

Procedia PDF Downloads 408
651 Optimization of the Drinking Water Treatment Process

Authors: M. Farhaoui, M. Derraz

Abstract:

Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage the sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20 and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96% and 99.47% respectively for low, medium and high turbidity levels.

Keywords: coagulation process, coagulant dose, sludge, turbidity removal

Procedia PDF Downloads 307
650 The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography

Authors: Noor Arda Adrina Daud, Mohd Hanafi Ali

Abstract:

The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality.

Keywords: compensating filter, aluminum, image quality, lateral, thoracolumbar

Procedia PDF Downloads 493
649 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline

Procedia PDF Downloads 436
648 Optimization of the Drinking Water Treatment Process Improvement of the Treated Water Quality by Using the Sludge Produced by the Water Treatment Plant

Authors: M. Derraz, M. Farhaoui

Abstract:

Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage Sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20, and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96%, and 99.47% respectively for low, medium and high turbidity levels.

Keywords: coagulation process, coagulant dose, sludge reuse, turbidity removal

Procedia PDF Downloads 217
647 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge

Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu

Abstract:

Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.

Keywords: aluminum, acidification, sludge, recovery

Procedia PDF Downloads 600
646 Nanocharacterization of PIII Treated 7075 Aluminum Alloy

Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda

Abstract:

Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.

Keywords: aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue

Procedia PDF Downloads 322
645 Corrosion Properties of Friction Welded Dissimilar Aluminum Alloys; Duralumin and AA6063

Authors: Sori Won, Bosung Seo, Kwangsuk Park, Seok Hong Min, Tae Kwon Ha

Abstract:

With the increased needs for lightweight materials in automobile industry, the usage of aluminum alloys becomes prevailed as components and car bodies due to their comparative specific strength. These parts composed of different aluminum alloys should be connected each other, where welding technologies are commonly applied. Among various welding methods, friction welding method as a solid state welding gets to be popular in joining aluminum alloys as it does not produce a defect such as blowhole that is often formed during typical welding processes. Once two metals are joined, corrosion would become an issue due to different electrochemical potentials. In this study, we investigated variations of corrosion properties when Duralumin and AA6063 were joined by friction welding. From the polarization test, it was found that the potential of the welded was placed between those of two original metals, which could be explained by a concept of mixed potential. Pitting is a common form as a result of the corrosion of aluminum alloys when they are exposed to 3.5 wt% NaCl solution. However, when two different aluminum alloys (Duralumin and AA6063) were joined, pitting corrosion occurred severely and uniformly in Duralumin while there were a few pits around precipitates in AA6063, indicating that AA6063 was cathodically protected.

Keywords: corrosion properties, friction welding, dissimilar Al alloys, polarization test

Procedia PDF Downloads 407
644 Experimental Study of Al₂O₃ and SiC Nano Particles on Tensile Strength of Al 1100 Sheet Produced by Accumulative Press Bonding Process

Authors: M. Zadshakoyan, H. Marassem Bonab, P. M. Keshtiban

Abstract:

The SPD process widely used to optimize microstructure, strength and mechanical properties of the metals. Processes such as ARB and APB could have a considerable impact on improving the properties of metals. The aluminum material after steel, known as the most used metal, Because of its low strength, there are restrictions on the use of this metal, it is required to spread further studies to increase strength and improve the mechanical properties of this light weight metal. In this study, Annealed aluminum material, with yield strength of 85 MPa and tensile strength of 124 MPa, sliced into 2 sheets with dimensions of 30 and 25 mm and the thickness of 1.5 mm. then the sheets press bonded under 6 cycles, which increased the ultimate strength to 281 MPa. In addition, by adding 0.1%Wt of SiC particles to interface of the sheets, the sheets press bonded by 6 cycles to achieve a homogeneous composite. The same operation using Al2O3 particles and a mixture of SiC+Al2O3 particles was repeated and the amount of strength and elongation of produced composites compared with each other and with pure 6 cycle press bonded Aluminum. The results indicated that the ultimate strength of Al/SiC composite was 2.6 times greater than Annealed aluminum. And Al/Al2O3 and Al/Al2O3+SiC samples were low strength than Al/SiC sample. The pure 6 time press bonded Aluminum had lowest strength by 2.2 times greater than annealed aluminum. Strength of aluminum was increased by making the metal matrix composite. Also, it was found that the hardness of pure Aluminum increased 1.7 times after 6 cycles of APB process, hardness of the composite samples improved further, so that, the hardness of Al/SiC increased up to 2.51 times greater than annealed aluminum.

Keywords: APB, nano composite, nano particles, severe plastic deformation

Procedia PDF Downloads 277
643 Component Comparison of Polyaluminum Chloride Produced from Various Methods

Authors: Wen Po Cheng, Chia Yun Chung, Ruey Fang Yu, Chao Feng Chen

Abstract:

The main objective of this research was to study the differences of aluminum hydrolytic products between two PACl preparation methods. These two methods were the acidification process of freshly formed amorphous Al(OH)3 and the conventional alkalization process of aluminum chloride solution. According to Ferron test and 27Al NMR analysis of those two PACl preparation procedures, the reaction rate constant (k) values and Al13 percentage of acid addition process at high basicity value were both lower than those values of the alkaline addition process. The results showed that the molecular structure and size distribution of the aluminum species in both preparing methods were suspected to be significantly different at high basicity value.

Keywords: polyaluminum chloride, Al13, amorphous aluminum hydroxide, Ferron test

Procedia PDF Downloads 355
642 A Review on the Studies on Mechanical and Tribological Properties of Aluminum and Magnesium Alloys Welded by Friction Stir Welding

Authors: Sukhdeep Singh Gill, Gurbhinder Singh Brar

Abstract:

In recent years, friction stir welding (FSW) has attracted the main attention of the concerned researcher especially in case of joining of nonferrous alloys like aluminum and magnesium due to its unmatchable properties with respect to other welding techniques. Friction stir welding is a solid state welding process which is most suitable for the welding of nonferrous alloys, especially aluminum and magnesium alloys. Aluminum and magnesium alloys are widely used for structural applications of all types of automobiles due to their superior mechanical properties with their low density. This paper deals with the critical review of the different properties (like tensile strength, microhardness, impact strength, corrosion resistance, and metallurgical investigation on SEM) obtained by the FSW of aluminum and magnesium alloys. After a critical review of the existing published literature on concerned topics, all the properties of welding joins are compared in the tabulated manner to optimize the selection of materials and FSW parameters according to mechanical and tribological properties. Different tool designs used for the FSW process are also thoroughly studied, and the influence of the design of the tool used in FSW on the different properties has also been incorporated in this paper. It has been observed from the existing published literature that FSW is the most effective and practical technique for joining the non ferrous alloys especially aluminum and magnesium alloys, and among the different FSW tools, left hand threaded tri-flute (LHTTF) tool is best for the welding of non ferrous alloys like aluminum and magnesium alloys which gives the superior mechanical properties to welding joint.

Keywords: aluminum, friction stir welding, magnesium, structural applications, tool design

Procedia PDF Downloads 156
641 Effect of Zirconium Addition to Aluminum Grain Refined by Ti on its Resistance to Wear: A Three-Dimensional Approach

Authors: S. M. A. Al-Qawabah, A. I. O. Zaid

Abstract:

Aluminum and its alloys are versatile materials which are widely used in industrial and engineering applications due to their good and useful properties e.g. high strength to weight ratio, high thermal and electrical conductivities and good resistance to corrosion. However, against these favorable properties they have the disadvantage they solidifying large grain columnar structure which negatively affects their mechanical properties and surface quality. Aluminum alloys are normally grain refined by some alloying elements, such as Ti, Ti-B or Zr. In this paper, the effect of zirconium addition to Al grain refined by Ti after extrusion on its wear resistance is investigated under different loads and sliding speeds namely at 5,10 and 20 N loads and sliding speeds ranging from m/min. and m/min. the results are presented in three-dimensional wear mode. To the best the authors' knowledge, the wear of aluminum in 3-dimensions has never been tackled before. In this work, the wear resistance of by presenting the results of wear are presented and discussed on the time, load and speed plots.

Keywords: aluminum grain refined, addition of titanium, wear resistance, titanium

Procedia PDF Downloads 379
640 Effect of Vanadium Addition to Aluminum Grain Refined by Ti or Ti + B on Its Microstructure, Mechanical Behavior, Fatigue Strength and Life

Authors: Adnan I. O. Zaid

Abstract:

As aluminum solidifies in columnar structure with large grain size which reduces its surface quality and mechanical strength; therefore it is normally grain refined either by titanium or titanium + boron (Ti or Ti + B). In this paper, the effect of addition of either Ti or Ti + B to commercially pure aluminum on its grain size, Vickers hardness, mechanical strength and fatigue strength and life is presented and discussed. Similarly, the effect of vanadium addition to Al grain refined by Ti or Ti+ B is presented and discussed. Two binary master alloys Al-Ti and Al-Vi were laboratory prepared from which five different micro-alloys in addition to the commercially pure aluminum namely Al-Ti, Al-Ti-B, Al-V, Al-Ti-V and Al-Ti-B-V were prepared for the investigation. Finally, the effect of their addition on the fatigue cracks initiation and propagation, using scanning electron microscope, SEM, is also presented and discussed. Photomirographs and photoscans are included in the paper.

Keywords: aluminum, fatigue, grain refinement, titanium, titanium+boron, vanadium

Procedia PDF Downloads 467
639 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration

Procedia PDF Downloads 291