Search results for: high density sludge
19273 Analysis of Universal Mobile Telecommunications Service (UMTS) Planning Using High Altitude Platform Station (HAPS)
Authors: Yosika Dian Komala, Uke Kurniawan Usman, Yuyun Siti Rohmah
Abstract:
The enable technology fills up needs of high-speed data service is Universal Mobile Telecommunications Service (UMTS). UMTS has a data rate up to 2Mbps.UMTS terrestrial system has a coverage area about 1-2km. High Altitude Platform Station (HAPS) can be built by a macro cell that is able to serve the wider area. Design method of UMTS using HAPS is planning base on coverage and capacity. The planning method is simulated with 2.8.1 Atoll’s software. Determination of radius of the cell based on the coverage uses free space loss propagation model. While the capacity planning to determine the average cell through put is available with the Offered Bit Quantity (OBQ).Keywords: UMTS, HAPS, coverage planning, capacity planning, signal level, Ec/Io, overlapping zone, throughput
Procedia PDF Downloads 63919272 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation
Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent
Abstract:
Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene
Procedia PDF Downloads 20819271 Results of Operation of Online Medical Care System
Authors: Mahsa Houshdar, Seyed Mehdi Samimi Ardestani , ُSeyed Saeed Sadr
Abstract:
Introduction: Online Medicare is a method in which parts of a medical process - whether its diagnostics, monitoring or the treatment itself will be done by using online services. This system has been operated in one boy’s high school, one girl’s high school and one high school in deprived aria. Method: At the first step the students registered for using the system. It was not mandatory and not free. They participated in estimating depression scale, anxiety scale and clinical interview by online medical care system. During this estimation, we could find the existence and severity of depression and anxiety in each one of the participants, also we could find the consequent needs of each one, such as supportive therapy in mild depression or anxiety, need to visited by psychologist in moderate cases, need to visited by psychiatrist in moderate-severe cases, need to visited by psychiatrist and psychologist in severe cases and need to perform medical lab examination tests. The lab examination tests were performed on persons specified by the system. The lab examinations were included: serum level of vitamin D, serum level of vitamin B12, serum level of calcium, fasting blood sugar, HbA1c, thyroid function tests and CBC. All of the students were solely treated by vitamins or minerals therapy and/ or treatment of medical problem (such as hypothyroidism). After a few months, we came back to high schools and estimated the existence and severity of depression and anxiety in treated students. With comparing these results, the affectability of the system could be prof. Results: Totally, we operate this project in 1077 participants in 243 of participant, the lab examination test were performed. In girls high schools: the existence and severity of depression significantly deceased (P value= 0.018<0.05 & P value 0.004< 0.05), but results about anxiety was not significant. In boys high schools: the existence and severity of depression significantly decreased (P value= 0.023<0.05 & P value = 0.004< 0.05 & P value= 0.049< 0.05). In boys high schools: the existence and severity of anxiety significantly decreased (P value= 0.041<0.05 & P value = 0.046< 0.05 &) but in one high school results about anxiety was not significant. In high school in deprived area the students did not have any problem paying for participating in the project, but they could not pay for medical lab examination tests. Thus, operation of the system was not possible in deprived area without a sponsor. Conclusion: This online medical system was successful in creating medical and psychiatric profile without attending physician. It was successful in decreasing depression without using antidepressants, but it was partially successful in decreasing anxiety.Keywords: depression, diabetes, online medicare, vitamin D deficiency
Procedia PDF Downloads 32519270 Advancement in Carbon Based Battery System
Authors: Mohini M. Sain, Vijay Kumar, Tasmia Tabassem, Jimi Tjong
Abstract:
In the recent times, the Lithium-sulfur batteries (LiSBs) have emerged as a highly promising next generation of secondary batteries for their high theoretical specific capacity (1675 mAh/g) and low cost, and they have shown immense possibilities in utilizing in battery operated electric vehicles (BEVs). However, the commercialization of LiSBs is restricted due to the slow redox kinetics of sulfur cathode and shuttling effect of polysulfides during battery operation. Thus, the development of novel host materials is crucial for suppressing the dissolution of polysulfides into electrolyte, and this eventually helps in resolving the long-term cycling problem in LiSBs. This work provides a simple and straightforward method to design carbon materials with optimized nitrogen content with high surface area and thus simultaneously reveals new methods and strategies for realizing high performance host material design for practical LiSBs.Keywords: Li ion battery, graphtitic carbon, electrode fabrication, BeV
Procedia PDF Downloads 53219269 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis
Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong
Abstract:
A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell
Procedia PDF Downloads 34319268 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth
Authors: Rajiv Arora
Abstract:
Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification
Procedia PDF Downloads 17619267 Surface Modification of SUS-304 Using Nitriding Treatment for Application of Bipolar Plates of Proton Exchange Membrane Fuel Cells
Authors: Wei-Ru Chang, Jenn-Jiang Hwang, Zen-Ting Hsiao, Shu-Feng Lee
Abstract:
Proton exchange membrane (PEM) fuel cells are widely used in electrical systems as an economical, low-polluting energy source. This study investigates the effects of PEMFC gas nitriding treatment on metal bipolar plates. The test material was SUS304 stainless steel. The study explored five different pretreatment processes, varying the corrosion resistance and electrical conductivity conditions. The most effective process was industrial acid washing, followed by heating to 500 °C. Under the condition, the corrosion current density was 8.695 μA, significantly lower than that of the untreated pretreatment sample flakes, which was measured as 38.351 μA.Keywords: nitriding, bipolar, 304, corrosion, resistance, pretreatment
Procedia PDF Downloads 108719266 Investigation of Biocorrosion in Brass by Arthrobacter sulfureus in Neutral Medium
Authors: Ramachandran Manivannan, B. Sakthi Swaroop, Selvam Noyel Victoria
Abstract:
Microbial corrosion of brass gauze by the aerobic film forming bacteria Arthrobacter sulfurous in neutral media was investigated using gravimetric studies. Maximum weight loss of 166.98 mg was observed for a period of 28 days of exposure to the bacterial medium as against the weight loss of 13.69 mg for control. The optical density studies for the bacterial culture was found to show attainment of stationary phase in 48 h. Scanning electron microscopy analysis of the samples shows the presence of pitting corrosion. The energy dispersive X-ray analysis of the samples showed increased oxygen and phosphorus content in the sample due to bacterial activity.Keywords: Arthrobacter sulfureus, biocorrosion, brass, neutral medium
Procedia PDF Downloads 17219265 Modification of Titanium Surfaces with Micro/Nanospheres for Local Antibiotic Release
Authors: Burcu Doymus, Fatma N. Kok, Sakip Onder
Abstract:
Titanium and titanium-based materials are commonly used to replace or regenerate the injured or lost tissues because of accidents or illnesses. Hospital infections and strong bond formation at the implant-tissue interface are directly affecting the success of the implantation as weak bonding with the native tissue and hospital infections lead to revision surgery. The purpose of the presented study is to modify the surface of the titanium substrates with nano/microspheres for local drug delivery and to prevent hospital infections. Firstly, titanium surfaces were silanized with APTES (3-Triethoxysilylpropylamine) following the negatively charged oxide layer formation. Then characterization studies using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were done on the modified surfaces. Secondly, microspheres/nanospheres were prepared with chitosan that is a natural polymer and having valuable properties such as non-toxicity, high biocompatibility, low allergen city and biodegradability for biomedical applications. Antibiotic (ciprofloxacin) loaded micro/nanospheres have been fabricated using emulsion cross-linking method and have been immobilized onto the titanium surfaces with different immobilization techniques such as covalent bond and entrapment. Optimization studies on size and drug loading capacities of micro/nanospheres were conducted before the immobilization process. Light microscopy and SEM were used to visualize and measure the size of the produced micro/nanospheres. Loaded and released drug amounts were determined by using UV- spectrophotometer at 278 nm. Finally, SEM analysis and drug release studies on the micro/nanospheres coated Ti surfaces were done. As a conclusion, it was shown that micro/nanospheres were immobilized onto the surfaces successfully and drug release from these surfaces was in a controlled manner. Moreover, the density of the micro/nanospheres after the drug release studies was higher on the surfaces where the entrapment technique was used for immobilization. Acknowledgement: This work is financially supported by The Scientific and Technological Research Council Of Turkey (Project # 217M220)Keywords: chitosan, controlled drug release, nanosphere, nosocomial infections, titanium
Procedia PDF Downloads 12519264 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt
Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed
Abstract:
Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.Keywords: resevoir sandstone, Egypt, Sinai, permeability
Procedia PDF Downloads 10019263 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar
Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo
Abstract:
In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.Keywords: ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion
Procedia PDF Downloads 23919262 Effect of Drop Impact Behavior on Spray Retention
Authors: Hassina Hafida Boukhalfa, Mathieu Massinon, Fréderic Lebeau, Mohamed Belhamra
Abstract:
Drop behaviour during impact affects retention. The increase of adhesion is usually seen as the objective when applying crop protection products, while bouncing and shattering are seen as detrimental to spray retention. However, observation of drop impacts using high speed shadow graphy shows that fragmentation can occur in Wenzel wetting regime. In this case, a part of the drop sticks on the surface, what contributes to retention. Using simultaneous measurements of drop impacts with high speed imaging and of retention with fluorometry for 3 spray mixtures on excised barley leaves allowed us to observe that about 50% of the drops fragmented in Wenzel state remain on the leaf. Depending on spray mixture, these impact outcomes accounted for 25 to 50% of retention, the higher contribution being correlated with bigger VMD (Volume Median Diameter). This contribution is non-negligible and should be considered when a modelling of spray retention process is performed.Keywords: drop impact, retention, fluorometry, high speed imaging
Procedia PDF Downloads 38119261 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution
Procedia PDF Downloads 59119260 Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent
Authors: Antaram Sarve, Mahesh Varma, Shriram Sonawane
Abstract:
Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock.Keywords: supercritical methyl acetate, CO2, biodiesel, fuel properties
Procedia PDF Downloads 56319259 A Situational Awareness Map for Allocating Relief Resources after Earthquake Occurrence
Authors: Hamid Reza Ranjbar, Ali Reza Azmoude Ardalan, Hamid Dehghani, Mohammad Reza Sarajian
Abstract:
Natural disasters are unexpected events which predicting them is difficult. Earthquake is one of the most devastating disasters among natural hazards with high rate of mortality and wide extent of damages. After the earthquake occurrence, managing the critical condition and allocating limited relief sources requiring a complete awareness of damaged area. The information for allocating relief teams should be precise and reliable as much as possible, and be presented in the appropriate time after the earthquake occurrence. This type of information was previously presented in the form of a damage map; conducting relief teams by using damage map mostly lead to waste of time for finding alive occupants under the rubble. In this research, a proposed standard for prioritizing damaged buildings in terms of requiring rescue and relief was presented. This standard prioritizes damaged buildings into four levels of priority including very high, high, moderate and low by considering key parameters such as type of land use, activity time, and inactivity time of each land use, time of earthquake occurrence and distinct index. The priority map by using the proposed standard could be a basis for guiding relief teams towards the areas with high relief priority.Keywords: Damage map, GIS, priority map, USAR
Procedia PDF Downloads 40419258 Assessment of Osteocalcin and Homocysteine Levels in Saudi Female Patients with Type II Diabetes Mellitus
Authors: Walaa Mohammed Saeed
Abstract:
Studies suggest a crosstalk between bone and metabolism through Osteocalcin (OC), a bone-derived protein that plays an important role in regulating glucose and fat metabolism. Studies relate type II Diabetes Mellitus (DMII) with Homocysteine (Hcy) and cardiovascular diseases (CVD). This study investigates the relationship between levels of OC, Hcy, and DMII in 85 subjects of which 50 were diabetic female patients (29–65 years) and 35 healthy controls. OC and Hcy levels were measured in fasting blood samples using immunoassay analyzer. Fasting serum glucose, glycated hemoglobin, lipid profile, were estimated by automated Siemens Dimension XP auto-analyzer. A significant increase in the frequency of low OC levels (p < 0.001) and high Hcy levels (p < 0.001) was detected in diabetic patients compared to controls (chi-squared test). Using ANOVA test, patients were divided into tertiles based on plasma OC and Hcy levels; fasting serum glucose varied inversely with OC but directly with Hcy tertiles (p=0.049, p=0.033 respectively). Atherogenic Index of Plasma (AIP=Log TG/HDL) predicts that diabetic patients with 36% high and 15% intermediate cardiovascular risk had increased frequency of low OC levels compared to low-risk patients (p=0.047). Another group of diabetic patients with 39% high and 11% intermediate CVD risk had increased frequency of high Hcy levels (p=0.033). A significant negative correlation existed between OC and glucose (r = -0.318; p = 0.035) while correlation between glucose level and Hcy (r = 0.851 p=0.022) was positive. Hence, low serum OC levels and high Hcy levels were associated with impaired glucose metabolism that may increase cardiovascular risk in DMII.Keywords: osteocalcin, homocysteine, type 2 diabetes, cardiovascular
Procedia PDF Downloads 15319257 Alternative Energy and Carbon Source for Biosurfactant Production
Authors: Akram Abi, Mohammad Hossein Sarrafzadeh
Abstract:
Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin
Procedia PDF Downloads 30119256 Extraction and Characterization of Kernel Oil of Acrocomia Totai
Authors: Gredson Keif Souza, Nehemias Curvelo Pereira
Abstract:
Kernel oil from Macaúba is an important source of essential fatty acids. Thus, a new knowledge of the oil of this species could be used in new applications, such as pharmaceutical drugs based in the manufacture of cosmetics, and in various industrial processes. The aim of this study was to characterize the kernel oil of macaúba (Acrocomia Totai) at different times of their maturation. The physico-chemical characteristics were determined in accordance with the official analytical methods of oils and fats. It was determined the content of water and lipids in kernel, saponification value, acid value, water content in the oil, viscosity, density, composition in fatty acids by gas chromatography and molar mass. The results submitted to Tukey test for significant value to 5%. Found for the unripe fruits values superior to unsaturated fatty acids.Keywords: extraction, characterization, kernel oil, acrocomia totai
Procedia PDF Downloads 35619255 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland
Authors: A. Sgobba, C. Meskell
Abstract:
The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources
Procedia PDF Downloads 12919254 Catalytic Nanomaterials for Energy Conversion and Storage
Authors: Yijin Kang
Abstract:
Chemical-electrical energy conversion and storage are greatly attractive for the development of sustainable energy. Catalytic processes are heavily involved in such energy conversion and storage. Development of high-performance catalyst nanomaterials relies on tuning material structures at nanoscale. This is in particular manifested in the design of catalysts demanding both high activity and durability. Here, a research system will be presented that connects fundamental investigation on well-defined extended surfaces (e.g. single crystal surfaces), extrapolation onto nanocrystals with highly controlled shape and size, exploration of interfacial interaction using novel nanocrystal superlattices as platform, and finally design of high performance catalysts in which all the possible beneficial properties from complex functional structures are implemented. Using recently published results, it will be demonstrated that optimal and fine balanced activity and durability, as well as tunable functionality, can be achieved by carefully tailoring the nanostructure of catalytic nanomaterials.Keywords: energy, nanomaterials, catalysis, electrocatalysis
Procedia PDF Downloads 23519253 Ground Improvement with Basal Reinforcement with High Strength Geogrids and PVDs for Embankment over Soft Soils
Authors: Ratnakar Mahajan, Matteo Lelli, Kinjal Parmar
Abstract:
Ground improvement is a very important aspect of infrastructure development, especially when it comes to deep-ground improvement. The use of various geosynthetic applications is very common these days for ground improvement. This paper presents a case study where the combination of two geosynthetic applications was used in order to optimize the design as well as to control the settlements through uniform load distribution. The Agartala-Akaura rail project was made to help increase railway connectivity between India and Bangladesh. Both countries have started the construction of the same. The project requires high railway embankments to be built for the rail link. However, the challenge was to design a proper ground improvement solution as the entire area comprises very soft soil for an average depth of 15m. After due diligence, a combination of two methods was worked out by Maccaferri. PVDs were provided for the consolidation, and on top of that, a layer of high-strength geogrids (Paralink) was proposed as a basal reinforcement. The design approach was followed as described in Indian standards as well as British standards. By introducing a basal reinforcement, the spacing of PVDs could be increased, which allowed quick installation and less material consumption while keeping the consolidation time within the project duration.Keywords: ground improvement, basal reinforcement, PVDs, high strength geogrids, Paralink
Procedia PDF Downloads 7419252 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications
Authors: Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper suggests a design methodology for the hardware and software of the Electronic Control Unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such that it incorporates a high performance 32-bit CPU and a separate Peripheral Control-Processor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the Hardware-in-the-Loop Simulation (HILS) for Electric Power Steering (EPS) systems which consists of the EPS mechanism, the designed ECU, and monitoring tools.Keywords: electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation
Procedia PDF Downloads 29519251 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor
Authors: Zeynep Aytaç, Nuri Yücel
Abstract:
Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point
Procedia PDF Downloads 14419250 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors
Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami
Abstract:
Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.Keywords: fault diagnosis, fault location, integrated sensors, PV modules
Procedia PDF Downloads 22419249 Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development
Authors: Susana Gonçalves, Joana Lencart, Anabela Gregório Dias
Abstract:
Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT.Keywords: TBI, VMAT, anthropomorphic phantom, tissue equivalent materials
Procedia PDF Downloads 8019248 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)
Authors: Zeki Oralhan, Mahmut Tokmakçı
Abstract:
SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP
Procedia PDF Downloads 26619247 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings
Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi
Abstract:
Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning
Procedia PDF Downloads 14119246 Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force
Authors: Fatemeh Shahi, Mehdi Sharifian, Laia Shahrassai, Elham Eskandari A.
Abstract:
A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma.Keywords: magnetic field generation, laser-plasma interaction, ponderomotive force, inhomogeneous plasma
Procedia PDF Downloads 29319245 A New Full Adder Cell for High Performance Low Power Applications
Authors: Mahdiar Hosseighadiry, Farnaz Fotovatikhah, Razali Ismail, Mohsen Khaledian, Mehdi Saeidemanesh
Abstract:
In this paper, a new low-power high-performance full adder is presented based on a new design method. The proposed method relies on pass gate design and provides full-swing circuits with minimum number of transistors. The method has been applied on SUM, COUT and XOR-XNOR modules resulting on rail-to-rail intermediate and output signals with no feedback transistors. The presented full adder cell has been simulated in 45 and 32 nm CMOS technologies using HSPICE considering parasitic capacitance and compared to several well-known designs from literature. In addition, the proposed cell has been extensively evaluated with different output loads, supply voltages, temperatures, threshold voltages, and operating frequencies. Results show that it functions properly under all mentioned conditions and exhibits less PDP compared to other design styles.Keywords: full adders, low-power, high-performance, VLSI design
Procedia PDF Downloads 38819244 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading
Authors: Kwak, Hyo-Gyung, Gang, Han Gul
Abstract:
In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy
Procedia PDF Downloads 520