Search results for: ponderomotive force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2174

Search results for: ponderomotive force

2174 Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force

Authors: Fatemeh Shahi, Mehdi Sharifian, Laia Shahrassai, Elham Eskandari A.

Abstract:

A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma.

Keywords: magnetic field generation, laser-plasma interaction, ponderomotive force, inhomogeneous plasma

Procedia PDF Downloads 242
2173 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma

Authors: Sandeep Kumar, Naveen Gupta

Abstract:

Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.

Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density

Procedia PDF Downloads 161
2172 Effect of Pre-Plasma Potential on Laser Ion Acceleration

Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz

Abstract:

In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.

Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma

Procedia PDF Downloads 93
2171 Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser

Authors: Monika Singh

Abstract:

A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals.

Keywords: surface plasmons, surface waves, thin films, THz radiation

Procedia PDF Downloads 355
2170 Key Technologies and Evolution Strategies for Computing Force Bearer Network

Authors: Zhaojunfeng

Abstract:

Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment.

Keywords: component-computing force bearing, bearing requirements of computing force application, dual-SLA indicators for computing force applications, SRv6, evolution strategies

Procedia PDF Downloads 91
2169 A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space

Authors: Mohsen Farshad

Abstract:

Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles.

Keywords: entropy, information, force, Brownian Motions

Procedia PDF Downloads 37
2168 Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor

Authors: Junkyeong Kim, Jooyoung Park, Aoqi Zhang, Seunghee Park

Abstract:

The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge.

Keywords: tensile force estimation, embedded EM sensor, magnetization energy loss, PSC girder

Procedia PDF Downloads 303
2167 A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach

Authors: T. C. Bera, A. Bansal, D. Nema

Abstract:

During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration.

Keywords: turning, cutting forces, cutting constants, uncut chip thickness

Procedia PDF Downloads 480
2166 Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains two main parts. In the first part of paper we simulated and studied three type of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part, we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode Length and methods of improvement of adhesion force by changing these values.

Keywords: electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, electroadhesive grippers

Procedia PDF Downloads 359
2165 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum

Authors: Dunwen Zuo, Yongfang Deng, Bo Song

Abstract:

An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.

Keywords: FSJ, force factor, AA2024 aluminum, friction stir joining

Procedia PDF Downloads 450
2164 Multilayer Ceramic Capacitors: Based Force Sensor Array for Occlusal Force Measurement

Authors: Sheng-Che Chen, Keng-Ren Lin, Che-Hsin Lin, Hao-Yuan Tseng, Chih-Han Chang

Abstract:

Teeth play an important role in providing the essential nutrients. The force loading of chewing on the crow is important condition to evaluate long-term success of many dental treatments. However, the quantification of the force regarding forces are distributed over the dental crow is still not well recognized. This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor for measuring the distribution of the force distribute over the first molar. The developed sensor array is based on a flexible polyimide electrode and barium titanate-based MLCCs. MLCCs are commonly used in the electronic industry and it is a typical electric component composed of BaTiO₃, which is used as a capacitive material. The most important is that it also can be used as a force-sensing component by its piezoelectric property. In this study, to increase the sensitivity as well as to reduce the variation of different MLCCs, a treatment process is utilized. The MLCC force sensors are able to measure large forces (above 500 N), making them suitable for measuring the bite forces on the tooth crown. Moreover, the sensors also show good force response and good repeatability.

Keywords: force sensor array, multilayer ceramic capacitors, occlusal force, piezoelectric

Procedia PDF Downloads 379
2163 Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine

Authors: W. R. Li, J. K. Xia, R. Q. Peng, Z. Y. Guo, L. Jiang

Abstract:

According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine.

Keywords: axial end flux leakage, detent force, flux distribution, transverse flux PM linear machine

Procedia PDF Downloads 409
2162 Effect of Geomagnetic Field on Motion of Conductor

Authors: Bharti Gupta, Alaukik Sharma

Abstract:

The first aim is to determine the effect of the Earth's magnetic field on the motion of a conductor to evaluate the variations of the orbital elements of the conductor due to these effects. The effects of Earth's magnetic field on the motion of conductors have been studied at different heights, longitudes and latitudes. When the conductor cut the geomagnetic line of force, then an electro-motive force (EMF) is induced across to the conductor. Due to this induced EMF, an induced current will flow through the conductor. Resulting, a Lorentz force will be applied on the conductor who opposes the motion of the conductor. So our second aim is to determine the accurate value of Induced EMF and induced Lorentz Force at different heights, longitudes and latitudes.

Keywords: induced EMF, Lorentz force, geomagnetic lines of force, moving conductor

Procedia PDF Downloads 113
2161 Simulation and Experimental Study on Tensile Force Measurement of PS Tendons Using an Embedded EM Sensor

Authors: ByoungJoon Yu, Junkyeong Kim, Seunghee Park

Abstract:

The tensile force estimation PS tendons is in great demand on monitoring the structural health condition of PSC girder bridges. Measuring the tensile force of the PS tendons inside the PSC girder using conventional methods is hard due to its location. In this paper, an embedded EM sensor based tensile force estimation of PS tendon was carried out by measuring the permeability of the PS tendons in PSC girder. The permeability is changed due to the induced tensile force by the magneto-elastic effect and the effect then lead to the gradient change of the B-H curve. An experiment was performed to obtain the signals from the EM sensor using three down-scaled PSC girder models. The permeability of PS tendons was proportionally decreased according to the increase of the tensile forces. To verify the experiment results, a simulation of tensile force estimation will be conducted in further study. Consequently, it is expected that both the experiment results and the simulation results increase the accuracy of the tensile force estimation, and then it could be one of the solutions for evaluating the performance of PSC girder.

Keywords: tensile force estimation, embedded EM sensor, PSC girder, EM sensor simulation, cross section loss

Procedia PDF Downloads 435
2160 Research on Robot Adaptive Polishing Control Technology

Authors: Yi Ming Zhang, Zhan Xi Wang, Hang Chen, Gang Wang

Abstract:

Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.

Keywords: robot polishing, force feedback, impedance control, adaptive control

Procedia PDF Downloads 164
2159 Influence of Angular Position of Unbalanced Force on Crack Breathing Mechanism

Authors: Roselyn Zaman, Mobarak Hossain

Abstract:

A new mathematical model is developed to study crack breathing behavior considering effect of angular position of unbalanced force at different crack locations. Crack breathing behavior has been determined using effectual bending angle by studying the transient change of the crack area. Different crack breathing behavior of the unbalanced shaft has been observed for different combination of angular position of unbalanced force with crack location except crack locations 0.3L and 0.8335L, where L is the total length of the shaft, where unbalanced shaft behave completely like the balanced shaft. Based on different combination of angular position of unbalanced force with crack location, the stiffness of unbalanced shaft can be divided into three regions. An unbalanced shaft is overall stiffer than a balanced shaft when angular position of unbalance force is between 90° to 270° and crack located between 0.3L and 0.8335L, and it is overall flexible when the crack located in outside this crack region. On the other hand, it is overall flexible when angular position of unbalanced force is between 0° to 90° or 270° to 360° and crack located in middle region and it is overall stiffer for outside this crack region.

Keywords: cracked shaft, crack location, shaft stiffness, unbalanced force, and unbalanced force orientation

Procedia PDF Downloads 233
2158 An Experimental Study of Automotive Drum Brake Vibrations

Authors: Nouby Ghazaly

Abstract:

The present paper investigates experimentally the effect coefficient of friction at different operation conditions on the variation of the brake temperature, brake force, and brake vibration with the braking time. All the experimental tests were carried out using brake dynamometer which designed and constructed in Vehicle Dynamic Laboratory. The results indicate that the brake temperature increases with the increase of the normal force and sliding speed especially with the increase of the braking time. The normal force has the effect on increasing the brake force. On the contrary, the vehicle speed has the effect on decreasing the brake force. Both the normal force and sliding speed affect the brake vibration according to the friction behavior.

Keywords: brake dynamometer, coefficient of friction, drum brake vibrations, friction behavior

Procedia PDF Downloads 278
2157 Force Feedback Enabled Syringe for Aspiration and Biopsy

Authors: Pelin Su Firat, Sohyung Cho

Abstract:

Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.

Keywords: biopsy, syringe, force sensors, haptic feedback

Procedia PDF Downloads 8
2156 Slope Stability of an Earthen Levee Strengthened by HPTRM under Turbulent Overtopping Conditions

Authors: Fashad Amini, Lin Li

Abstract:

High performance turf reinforcement mat (HPTRM) is one of the most advanced flexible armoring technologies for severe erosion challenges. The effect of turbulence on the slope stability of an earthen levee strengthened by high performance turf reinforcement mat (HPTRM) is investigated in this study for combined storm surge and wave overtopping conditions. The results show that turbulence has strong influence on the slope stability during the combined storm surge and wave overtopping conditions. Among the surge height, peak wave force and turbulent force. The turbulent force has the ability to stabilize the earthen levee at the large wave force the turbulent force has strongest effect on the FS. The surge storm acts as an independent force on the slope stability of the earthen levee. It just adds to the effects of the turbulent force and wave force on the slope stability of HPTRM strengthened levee.

Keywords: slope stability, strength reduction method, HPTRM, levee, overtopping

Procedia PDF Downloads 334
2155 Evaluation of Joint Contact Forces and Muscle Forces in the Subjects with Non-Specific Low Back Pain

Authors: Mohammad Taghi Karimi, Maryam Hasan Zahraee

Abstract:

Background: Low back pain (LBP) is a common health and socioeconomic problem, especially the chronic one. The joint contact force is an important parameter during walking which increases the incidence of injury and degenerative joint disease. To our best knowledge, there are not enough evidences in literature on the muscular forces and joint contact forces in subjects with low back pain. Purpose: The main hypothesis associated with this research was that joint contact force of L4/L5 of non-specific chronic low back pain subjects was the same as that of normal. Therefore, the aim of this study was to determine the joint contact force difference between non-specific chronic low back pain and normal subjects. Method: This was an experimental-comparative study. 20 normal subjects and 20 non-specific chronic low back pain patients were recruited in this study. Qualysis motion analysis system and a Kistler force plate were used to collect the motions and the force applied on the leg, respectively. OpenSimm software used to determine joint contact force and muscle forces in this study. Some parameters such as force applied on the legs (pelvis), kinematic of hip and pelvic, peaks of muscles, force of trunk musculature and joint contact force of L5/S1 were used for further analysis. Differences between mean values of all data were measured using two-sample t-test among the subjects. Results: The force produced by Semitendinosus, Biceps Femoris, and Adductor muscles were significantly different between low back pain and normal subjects. Moreover, the mean value of breaking component of the force of the knee joint increased significantly in low back pain subjects, besides a significant decrease in mean value of the vertical component of joint reaction force compared to the normal ones. Conclusions: The forces produced by the trunk and pelvic muscles, and joint contact forces differ significantly between low back pain and normal subjects. It seems that those with non-specific chronic low back pain use trunk muscles more than normal subjects to stabilize the pelvic during walking.

Keywords: low back pain, joint contact force, kinetic, muscle force

Procedia PDF Downloads 203
2154 Introduction of the Fluid-Structure Coupling into the Force Analysis Technique

Authors: Océane Grosset, Charles Pézerat, Jean-Hugh Thomas, Frédéric Ablitzer

Abstract:

This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented.

Keywords: aeroacoustics, fluid-structure coupling, inverse methods, naval, turbulent flow

Procedia PDF Downloads 478
2153 Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method

Authors: Maamar Yahiaoui, Abdelrrahmene Kechich, Ismail Elkhallile Bousserhene

Abstract:

This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value.

Keywords: mathematical model, Matlab, PMLSM, control, linearization, estimator, force, load, current

Procedia PDF Downloads 557
2152 Development of a Force-Sensing Toothbrush for Gum Recession Measurement Using Programmable Automation Controller

Authors: Sorayya Kazemi, Hamed Kharrati, Mehdi Abedinpour Fallah

Abstract:

This paper presents the design and implementation of a novel electric pressure-sensitive toothbrush, capable of measuring the forces applied to the head of the brush. The developed device is used for gum recession measurement. In particular, the percentage of gum recession is measured by a Programmable Automation controller (PAC). Moreover, the brushing forces are measured by a Force Sensing Resistor (FSR) sensor. These forces are analog inputs of PAC. According to the applied forces during patient’s brushing and the patient’s percentage of gum recession, dentist sets the standard force range. The instrument alarms when the patient applies a force over the set range.

Keywords: gum recession, force sensing resistor, controller, toothbrush

Procedia PDF Downloads 453
2151 Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array

Authors: Andrew Youssef, David Matthews, Jie Pan

Abstract:

Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors.

Keywords: embedded sensor, monitoring, PVDF, vibration

Procedia PDF Downloads 291
2150 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field

Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar

Abstract:

A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.

Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain

Procedia PDF Downloads 355
2149 A Problem in Microstretch Thermoelastic Diffusive Medium

Authors: Devinder Singh, Arvind Kumar, Rajneesh Kumar

Abstract:

The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation.

Keywords: normal force, tangential force, microstretch, thermoelastic, the integral transform technique, deforming force, microstress force, boundary value problem

Procedia PDF Downloads 576
2148 A Calibration Device for Force-Torque Sensors

Authors: Nicolay Zarutskiy, Roman Bulkin

Abstract:

The paper deals with the existing methods of force-torque sensor calibration with a number of components from one to six, analyzed their advantages and disadvantages, the necessity of introduction of a calibration method. Calibration method and its constructive realization are also described here. A calibration method allows performing automated force-torque sensor calibration both with selected components of the main vector of forces and moments and with complex loading. Thus, two main advantages of the proposed calibration method are achieved: the automation of the calibration process and universality.

Keywords: automation, calibration, calibration device, calibration method, force-torque sensors

Procedia PDF Downloads 606
2147 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: bearing, force measurement, IoT, strain gauge

Procedia PDF Downloads 103
2146 Soret-Driven Convection in a Binary Fluid with Coriolis Force

Authors: N. H. Z. Abidin, N. F. M. Mokhtar, S. S. A. Gani

Abstract:

The influence of diffusion of the thermal or known as Soret effect in a heated Binary fluid model with Coriolis force is investigated theoretically. The linear stability analysis is used, and the eigenvalue is obtained using the Galerkin method. The impact of the Soret and Coriolis force on the onset of stationary convection in a system is analysed with respect to various Binary fluid parameters and presented graphically. It is found that an increase of the Soret values, destabilize the Binary fluid layer system. However, elevating the values of the Coriolis force helps to lag the onset of convection in a system.

Keywords: Benard convection, binary fluid, Coriolis, Soret

Procedia PDF Downloads 343
2145 An Experimental Investigation on the Amount of Drag Force of Sand on a Cone Moving at Low Uniform Speed

Authors: M. Jahanandish, Gh. Sadeghian, M. H. Daneshvar, M. H. Jahanandish

Abstract:

The amount of resistance of a particular medium like soil to the moving objects is the interest of many areas in science. These include soil mechanics, geotechnical engineering, powder mechanics etc. Knowledge of drag force is also used for estimating the amount of momentum of fired objects like bullets. This paper focuses on measurement of drag force of sand on a cone when it moves at a low constant speed. A 30-degree apex angle cone has been used for this purpose. The study consisted of both loose and dense conditions of the soil. The applied speed has been in the range of 0.1 to 10 mm/min. The results indicate that the required force is basically independent of the cone speed; but, it is very dependent on the material densification and confining stress.

Keywords: drag force, sand, moving speed, friction angle, densification, confining stress

Procedia PDF Downloads 328