Search results for: linear%20frequency%20modulation%20signal
513 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 370512 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration
Authors: Mohammad Reza Esmaili
Abstract:
One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto
Procedia PDF Downloads 71511 Monitoring of 53 Contaminants of Emerging Concern: Occurrence in Effluents, Sludges, and Surface Waters Upstream and Downstream of 7 Wastewater Treatment Plants
Authors: Azziz Assoumani, Francois Lestremau, Celine Ferret, Benedicte Lepot, Morgane Salomon, Helene Budzinski, Marie-Helene Devier, Pierre Labadie, Karyn Le Menach, Patrick Pardon, Laure Wiest, Emmanuelle Vulliet, Pierre-Francois Staub
Abstract:
Seven French wastewater treatment plants (WWTP) were monitored for 53 contaminants of emerging concern within a nation-wide monitoring campaign in surface waters, which took place in 2018. The overall objective of the 2018 campaign was to provide the exercise of prioritization of emerging substances, which is being carried out in 2021, with monitoring data. This exercise should make it possible to update the list of relevant substances to be monitored (SPAS) as part of future water framework directive monitoring programmes, which will be implemented in the next water body management cycle (2022). One sampling campaign was performed in October 2018 in the seven WWTP, where affluent and sludge samples were collected. Surface water samples were collected in September 2018 at three to five sites upstream and downstream the point of effluent discharge of each WWTP. The contaminants (36 biocides and 17 surfactants, selected by the Prioritization Experts Committee) were determined in the seven WWTP effluent and sludge samples and in surface water samples by liquid or gas chromatography coupled with tandem mass spectrometry, depending on the contaminant. Nine surfactants and three biocides were quantified at least in one WWTP effluent sample. Linear alkylbenzene sulfonic acids (LAS) and fipronil were quantified in all samples; the LAS were quantified at the highest median concentrations. Twelve surfactants and 13 biocides were quantified in at least one sludge sample. The LAS and didecyldimethylammonium were quantified in all samples and at the highest median concentrations. Higher concentration levels of the substances quantified in WWTP effluent samples were observed in the surface water samples collected downstream the effluents discharge points, compared with the samples collected upstream, suggesting a contribution of the WWTP effluents in the contamination of surface waters.Keywords: contaminants of emerging concern, effluent, monitoring, river water, sludge
Procedia PDF Downloads 151510 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution
Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud
Abstract:
In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch
Procedia PDF Downloads 426509 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters
Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu
Abstract:
Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs
Procedia PDF Downloads 203508 Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy
Authors: Olawale S. Fatoba, Stephen A. Akinlabi, Esther T. Akinlabi, Rezvan Gharehbaghi
Abstract:
The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings.Keywords: Al-Cu-Fe coating, corrosion, intermetallics, laser metal deposition, Ti-6Al-4V alloy, wear resistance
Procedia PDF Downloads 180507 Analysis of Extreme Rainfall Trends in Central Italy
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Marco Cifrodelli, Corrado Corradini
Abstract:
The trend of magnitude and frequency of extreme rainfalls seems to be different depending on the investigated area of the world. In this work, the impact of climate change on extreme rainfalls in Umbria, an inland region of central Italy, is examined using data recorded during the period 1921-2015 by 10 representative rain gauge stations. The study area is characterized by a complex orography, with altitude ranging from 200 to more than 2000 m asl. The climate is very different from zone to zone, with mean annual rainfall ranging from 650 to 1450 mm and mean annual air temperature from 3.3 to 14.2°C. Over the past 15 years, this region has been affected by four significant droughts as well as by six dangerous flood events, all with very large impact in economic terms. A least-squares linear trend analysis of annual maximums over 60 time series selected considering 6 different durations (1 h, 3 h, 6 h, 12 h, 24 h, 48 h) showed about 50% of positive and 50% of negative cases. For the same time series the non-parametrical Mann-Kendall test with a significance level 0.05 evidenced only 3% of cases characterized by a negative trend and no positive case. Further investigations have also demonstrated that the variance and covariance of each time series can be considered almost stationary. Therefore, the analysis on the magnitude of extreme rainfalls supplies the indication that an evident trend in the change of values in the Umbria region does not exist. However, also the frequency of rainfall events, with particularly high rainfall depths values, occurred during a fixed period has also to be considered. For all selected stations the 2-day rainfall events that exceed 50 mm were counted for each year, starting from the first monitored year to the end of 2015. Also, this analysis did not show predominant trends. Specifically, for all selected rain gauge stations the annual number of 2-day rainfall events that exceed the threshold value (50 mm) was slowly decreasing in time, while the annual cumulated rainfall depths corresponding to the same events evidenced trends that were not statistically significant. Overall, by using a wide available dataset and adopting simple methods, the influence of climate change on the heavy rainfalls in the Umbria region is not detected.Keywords: climate changes, rainfall extremes, rainfall magnitude and frequency, central Italy
Procedia PDF Downloads 239506 Characterising Performative Technological Innovation: Developing a Strategic Framework That Incorporates the Social Mechanisms That Promote Change within a Technological Environment
Authors: Joan Edwards, J. Lawlor
Abstract:
Technological innovation is frequently defined in terms of bringing a new invention to market through a relatively straightforward process of diffusion. In reality, this process is complex and non-linear in nature, and includes social and cognitive factors that influence the development of an emerging technology and its related market or environment. As recent studies contend technological trajectory is part of technological paradigms, which arise from the expectations and desires of industry agents and results in co-evolution, it may be realised that social factors play a major role in the development of a technology. It is conjectured that collective social behaviour is fuelled by individual motivations and expectations, which inform the possibilities and uses for a new technology. The individual outlook highlights the issues present at the micro-level of developing a technology. Accordingly, this may be zoomed out to realise how these embedded social structures, influence activities and expectations at a macro level and can ultimately strategically shape the development and use of a technology. These social factors rely on communication to foster the innovation process. As innovation may be defined as the implementation of inventions, technological change results from the complex interactions and feedback occurring within an extended environment. The framework presented in this paper, recognises that social mechanisms provide the basis for an iterative dialogue between an innovator, a new technology, and an environment - within which social and cognitive ‘identity-shaping’ elements of the innovation process occur. Identity-shaping characteristics indicate that an emerging technology has a performative nature that transforms, alters, and ultimately configures the environment to which it joins. This identity–shaping quality is termed as ‘performative’. This paper examines how technologies evolve within a socio-technological sphere and how 'performativity' facilitates the process. A framework is proposed that incorporates the performative elements which are identified as feedback, iteration, routine, expectations, and motivations. Additionally, the concept of affordances is employed to determine how the role of the innovator and technology change over time - constituting a more conducive environment for successful innovation.Keywords: affordances, framework, performativity, strategic innovation
Procedia PDF Downloads 208505 Effect of Immunocastration Vaccine Administration at Different Doses on Performance of Feedlot Holstein Bulls
Authors: M. Bolacali
Abstract:
The aim of the study is to determine the effect of immunocastration vaccine administration at different doses on fattening performance of feedlot Holstein bulls. Bopriva® is a vaccine that stimulates the animals' own immune system to produce specific antibodies against gonadotropin releasing factor (GnRF). Ninety four Holstein male calves (309.5 ± 2.58 kg body live weight and 267 d-old) assigned to the 4 treatments. Control group; 1 mL of 0.9% saline solution was subcutaneously injected to intact bulls on 1st and 60th days of the feedlot as placebo. On the same days of the feedlot, Bopriva® at two doses of 1 mL and 1 mL for Trial-1 group, 1.5 mL, and 1.5 mL for Trial-2 group, 1.5 mL, and 1 mL for Trial-3 group were subcutaneously injected to bulls. The study was conducted in a private establishment in the Sirvan district of Siirt province and lasted 180 days. The animals were weighed at the beginning of fattening and at 30-day intervals to determine their live weights at various periods. The statistical analysis for normal distribution data of the treatment groups was carried out with the general linear model procedure of SPSS software. The fattening initial live weight in Control, Trial-1, Trial-2 and Trial-3 groups was respectively 309.21, 306.62, 312.11, and 315.39 kg. The fattening final live weight was respectively 560.88, 536.67, 548.56, and 548.25 kg. The daily live weight gain during the trial was respectively 1.40, 1.28, 1.31, and 1.29 kg/day. The cold carcass yield was respectively 51.59%, 50.32%, 50.85%, and 50.77%. Immunocastration vaccine administration at different doses did not affect the live weights and cold carcass yields of Holstein male calves reared under intensive conditions (P > 0.05). However, it was determined to reduce fattening performance between 61-120 days (P < 0.05) and 1-180 days (P < 0.01). In addition, it was determined that the best performance among the vaccine-treated groups occurred in the group administered a 1.5 mL of vaccine on the 1st and 60th study days. In animals, castration is used to control fertility, aggressive and sexual behaviors. As a result, the fact that stress is induced by physical castration in animals and active immunization against GnRF maintains performance by maximizing welfare in bulls improves carcass and meat quality and controls unwanted sexual and aggressive behavior. Considering such features, it may be suggested that immunocastration vaccine with Bopriva® can be administered as a 1.5 mL dose on the 1st and 60th days of the fattening period in Holstein bulls.Keywords: anti-GnRF, fattening, growth, immunocastration
Procedia PDF Downloads 195504 Conflation Methodology Applied to Flood Recovery
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.Keywords: community resilience, conflation, flood risk, nuisance flooding
Procedia PDF Downloads 107503 Developing Environmental Engineering Alternatives for Deep Desulphurization of Transportation Fuels
Authors: Nalinee B. Suryawanshi, Vinay M. Bhandari, Laxmi Gayatri Sorokhaibam, Vivek V. Ranade
Abstract:
Deep desulphurization of transportation fuels is a major environmental concern all over the world and recently prescribed norms for the sulphur content require below 10 ppm sulphur concentrations in fuels such as diesel and gasoline. The existing technologies largely based on catalytic processes such as hydrodesulphurization, oxidation require newer catalysts and demand high cost of deep desulphurization whereas adsorption based processes have limitations due to lower capacity of sulphur removal. The present work is an attempt to provide alternatives for the existing methodologies using a newer non-catalytic process based on hydrodynamic cavitation. The developed process requires appropriate combining of organic and aqueous phases under ambient conditions and passing through a cavitating device such as orifice, venturi or vortex diode. The implosion of vapour cavities formed in the cavitating device generates (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, orifice was used as a cavitating device and deep desulphurization was demonstrated for removal of thiophene as a model sulphur compound from synthetic fuel of n-octane, toluene and n-octanol. The effect of concentration of sulphur (up to 300 ppm), nature of organic phase and effect of pressure drop (0.5 to 10 bar) was discussed. A very high removal of sulphur content of more than 90% was demonstrated. The process is easy to operate, essentially works at ambient conditions and the ratio of aqueous to organic phase can be easily adjusted to maximise sulphur removal. Experimental studies were also carried out using commercial diesel as a solvent and the results substantiate similar high sulphur removal. A comparison of the two cavitating devices- one with a linear flow and one using vortex flow for effecting pressure drop and cavitation indicates similar trends in terms of sulphur removal behaviour. The developed process is expected to provide an attractive environmental engineering alternative for deep desulphurization of transportation fuels.Keywords: cavitation, petroleum, separation, sulphur removal
Procedia PDF Downloads 385502 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 272501 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration
Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas
Abstract:
Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.Keywords: dough, experimental, numerical, rupture
Procedia PDF Downloads 124500 Synthesis and Prediction of Activity Spectra of Substances-Assisted Evaluation of Heterocyclic Compounds Containing Hydroquinoline Scaffolds
Authors: Gizachew Mulugeta Manahelohe, Khidmet Safarovich Shikhaliev
Abstract:
There has been a significant surge in interest in the synthesis of heterocyclic compounds that contain hydroquinoline fragments. This surge can be attributed to the broad range of pharmaceutical and industrial applications that these compounds possess. The present study provides a comprehensive account of the synthesis of both linear and fused heterocyclic systems that incorporate hydroquinoline fragments. Furthermore, the pharmacological activity spectra of the synthesized compounds were assessed using the in silico method, employing the prediction of activity spectra of substances (PASS) program. Hydroquinoline nitriles 7 and 8 were prepared through the reaction of the corresponding hydroquinolinecarbaldehyde using a hydroxylammonium chloride/pyridine/toluene system and iodine in aqueous ammonia under ambient conditions, respectively. 2-Phenyl-1,3-oxazol-5(4H)-ones 9a,b and 10a,b were synthesized via the condensation of compounds 5a,b and 6a,b with hippuric acid in acetic acid in 30–60% yield. When activated, 7-methylazolopyrimidines 11a and b were reacted with N-alkyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-6-carbaldehydes 6a and b, and triazolo/pyrazolo[1,5-a]pyrimidin-6-yl carboxylic acids 12a and b were obtained in 60–70% yield. The condensation of 7-hydroxy-1,2,3,4-tetramethyl-1,2-dihydroquinoline 3 h with dimethylacetylenedicarboxylate (DMAD) and ethyl acetoacetate afforded cyclic products 16 and 17, respectively. The condensation reaction of 6-formyl-7-hydroxy-1,2,2,4-tetramethyl-1,2-dihydroquinoline 5e with methylene-active compounds such as ethyl cyanoacetate/dimethyl-3-oxopentanedioate/ethyl acetoacetate/diethylmalonate/Meldrum’s acid afforded 3-substituted coumarins containing dihydroquinolines 19 and 21. Pentacyclic coumarin 22 was obtained via the random condensation of malononitrile with 5e in the presence of a catalytic amount of piperidine in ethanol. The biological activities of the synthesized compounds were assessed using the PASS program. Based on the prognosis, compounds 13a, b, and 14 exhibited a high likelihood of being active as inhibitors of gluconate 2-dehydrogenase, as well as possessing antiallergic, antiasthmatic, and antiarthritic properties, with a probability value (Pa) ranging from 0.849 to 0.870. Furthermore, it was discovered that hydroquinoline carbonitriles 7 and 8 tended to act as effective progesterone antagonists and displayed antiallergic, antiasthmatic, and antiarthritic effects (Pa = 0.276–0.827). Among the hydroquinolines containing coumarin moieties, compounds 17, 19a, and 19c were predicted to be potent progesterone antagonists, with Pa values of 0.710, 0.630, and 0.615, respectively.Keywords: heterocyclic compound, hydroquinoline, Vilsmeier–Haack formulation, quinolone
Procedia PDF Downloads 48499 Tribological Behavior Of 17-4PH Steel Produced Via Binder Jetting And Low Energy High Current Pulsed Electron Beam Surface Treated
Authors: Lorenza Fabiocchi, Marco Mariani, Andrea Lucchini Huspek, Matteo Pozzi, Massimiliano Bestetti, Serena Graziosi, Nora Lecis
Abstract:
Additive manufacturing of stainless steels is rapidly developing thanks to the ability to achieve complex designs effortlessly. Stainless steel 17-4PH is valued for its high strength and corrosion resistance, however intricate geometries are challenging to obtain due to rapid tool wear when machined. Binder jetting additive manufacturing was used to produce 17–4PH samples and pulsed electron beam surface treatment was investigated to enhance surface properties of components. The aim is to improve the tribological performance compared to the as-sintered condition and the H900 aging process, which optimizes hardness and wear resistance. Printed samples were sintered in a reducing atmosphere and superficially treated with an electron beam by varying the voltage (20 - 25 - 30 kV) and pulse count (20 – 40 pulses). Then, the surface was characterized from a microstructural and mechanical standpoint. Scratch tests were performed, and a reciprocating linear pin-on-disk wear test was conducted at 2 N and 10 Hz. Results showed that the voltage affects the roughness and thickness of the treated layer, whilst the number of pulses influences the hardening of the microstructure and consequently the wear resistance. Treated samples exhibited lower coefficients of friction compared to as-printed surfaces, though the values approached those of aged samples after the abrasion of the melted layer, indicating a deeper heat-affected zone formation. Different amounts of residual stress in the heat effected zone were individuated through the scratch tests. Still, the friction remained lower than that of as-printed specimens. This study demonstrates that optimizing electron beam parameters is vital for achieving surface performance comparable to bulk aging treatments, with significant implications for long-term wear resistance.Keywords: low energy high current pulsed electron beam, tribology, binder jetting 3D printing, 17-4PH stainless steel
Procedia PDF Downloads 17498 Viability of EBT3 Film in Small Dimensions to Be Use for in-Vivo Dosimetry in Radiation Therapy
Authors: Abdul Qadir Jangda, Khadija Mariam, Usman Ahmed, Sharib Ahmed
Abstract:
The Gafchromic EBT3 film has the characteristic of high spatial resolution, weak energy dependence and near tissue equivalence which makes them viable to be used for in-vivo dosimetry in External Beam and Brachytherapy applications. The aim of this study is to assess the smallest film dimension that may be feasible for the use in in-vivo dosimetry. To evaluate the viability, the film sizes from 3 x 3 mm to 20 x 20 mm were calibrated with 6 MV Photon and 6 MeV electron beams. The Gafchromic EBT3 (Lot no. A05151201, Make: ISP) film was cut into five different sizes in order to establish the relationship between absorbed dose vs. film dimensions. The film dimension were 3 x 3, 5 x 5, 10 x 10, 15 x 15, and 20 x 20 mm. The films were irradiated on Varian Clinac® 2100C linear accelerator for dose range from 0 to 1000 cGy using PTW solid water phantom. The irradiation was performed as per clinical absolute dose rate calibratin setup, i.e. 100 cm SAD, 5.0 cm depth and field size of 10x10 cm2 and 100 cm SSD, 1.4 cm depth and 15x15 cm2 applicator for photon and electron respectively. The irradiated films were scanned with the landscape orientation and a post development time of 48 hours (minimum). Film scanning accomplished using Epson Expression 10000 XL Flatbed Scanner and quantitative analysis carried out with ImageJ freeware software. Results show that the dose variation with different film dimension ranging from 3 x 3 mm to 20 x 20 mm is very minimal with a maximum standard deviation of 0.0058 in Optical Density for a dose level of 3000 cGy and the the standard deviation increases with the increase in dose level. So the precaution must be taken while using the small dimension films for higher doses. Analysis shows that there is insignificant variation in the absorbed dose with a change in film dimension of EBT3 film. Study concludes that the film dimension upto 3 x 3 mm can safely be used up to a dose level of 3000 cGy without the need of recalibration for particular dimension in use for dosimetric application. However, for higher dose levels, one may need to calibrate the films for a particular dimension in use for higher accuracy. It was also noticed that the crystalline structure of the film got damage at the edges while cutting the film, which can contribute to the wrong dose if the region of interest includes the damage area of the filmKeywords: external beam radiotherapy, film calibration, film dosimetery, in-vivo dosimetery
Procedia PDF Downloads 499497 Effects of Vegetable Oils Supplementation on in Vitro Rumen Fermentation and Methane Production in Buffaloes
Authors: Avijit Dey, Shyam S. Paul, Satbir S. Dahiya, Balbir S. Punia, Luciano A. Gonzalez
Abstract:
Methane emitted from ruminant livestock not only reduces the efficiency of feed energy utilization but also contributes to global warming. Vegetable oils, a source of poly unsaturated fatty acids, have potential to reduce methane production and increase conjugated linoleic acid in the rumen. However, characteristics of oils, level of inclusion and composition of basal diet influences their efficacy. Therefore, this study was aimed to investigate the effects of sunflower (SFL) and cottonseed (CSL) oils on methanogenesis, volatile fatty acids composition and feed fermentation pattern by in vitro gas production (IVGP) test. Four concentrations (0, 0.1, 0.2 and 0.4ml /30ml buffered rumen fluid) of each oil were used. Fresh rumen fluid was collected before morning feeding from two rumen cannulated buffalo steers fed a mixed ration. In vitro incubation was carried out with sorghum hay (200 ± 5 mg) as substrate in 100 ml calibrated glass syringes following standard IVGP protocol. After 24h incubation, gas production was recorded by displacement of piston. Methane in the gas phase and volatile fatty acids in the fermentation medium were estimated by gas chromatography. Addition of oils resulted in increase (p<0.05) in total gas production and decrease (p<0.05) in methane production, irrespective of type and concentration. Although the increase in gas production was similar, methane production (ml/g DM) and its concentration (%) in head space gas was lower (p< 0.01) in CSL than in SFL at corresponding doses. Linear decrease (p<0.001) in degradability of DM was evident with increasing doses of oils (0.2ml onwards). However, these effects were more pronounced with SFL. Acetate production tended to decrease but propionate and butyrate production increased (p<0.05) with addition of oils, irrespective of type and doses. The ratio of acetate to propionate was reduced (p<0.01) with addition of oils but no difference between the oils was noted. It is concluded that both the oils can reduce methane production. However, feed degradability was also affected with higher doses. Cotton seed oil in small dose (0.1ml/30 ml buffered rumen fluid) exerted greater inhibitory effects on methane production without impeding dry matter degradability. Further in vivo studies need to be carried out for their practical application in animal ration.Keywords: buffalo, methanogenesis, rumen fermentation, vegetable oils
Procedia PDF Downloads 411496 Molecular Diagnosis of a Virus Associated with Red Tip Disease and Its Detection by Non Destructive Sensor in Pineapple (Ananas comosus)
Authors: A. K. Faizah, G. Vadamalai, S. K. Balasundram, W. L. Lim
Abstract:
Pineapple (Ananas comosus) is a common crop in tropical and subtropical areas of the world. Malaysia once ranked as one of the top 3 pineapple producers in the world in the 60's and early 70's, after Hawaii and Brazil. Moreover, government’s recognition of the pineapple crop as one of priority commodities to be developed for the domestics and international markets in the National Agriculture Policy. However, pineapple industry in Malaysia still faces numerous challenges, one of which is the management of disease and pest. Red tip disease on pineapple was first recognized about 20 years ago in a commercial pineapple stand located in Simpang Renggam, Johor, Peninsular Malaysia. Since its discovery, there has been no confirmation on its causal agent of this disease. The epidemiology of red tip disease is still not fully understood. Nevertheless, the disease symptoms and the spread within the field seem to point toward viral infection. Bioassay test on nucleic acid extracted from the red tip-affected pineapple was done on Nicotiana tabacum cv. Coker by rubbing the extracted sap. Localised lesions were observed 3 weeks after inoculation. Negative staining of the fresh inoculated Nicotiana tabacum cv. Coker showed the presence of membrane-bound spherical particles with an average diameter of 94.25nm under transmission electron microscope. The shape and size of the particles were similar to tospovirus. SDS-PAGE analysis of partial purified virions from inoculated N. tabacum produced a strong and a faint protein bands with molecular mass of approximately 29 kDa and 55 kDa. Partial purified virions of symptomatic pineapple leaves from field showed bands with molecular mass of approximately 29 kDa, 39 kDa and 55kDa. These bands may indicate the nucleocapsid protein identity of tospovirus. Furthermore, a handheld sensor, Greenseeker, was used to detect red tip symptoms on pineapple non-destructively based on spectral reflectance, measured as Normalized Difference Vegetation Index (NDVI). Red tip severity was estimated and correlated with NDVI. Linear regression models were calibrated and tested developed in order to estimate red tip disease severity based on NDVI. Results showed a strong positive relationship between red tip disease severity and NDVI (r= 0.84).Keywords: pineapple, diagnosis, virus, NDVI
Procedia PDF Downloads 795495 Physico-Mechanical Properties of Wood-Plastic Composites Produced from Polyethylene Terephthalate Plastic Bottle Wastes and Sawdust of Three Tropical Hardwood Species
Authors: Amos Olajide Oluyege, Akpanobong Akpan Ekong, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape, Olawale John Olukunle
Abstract:
This study was carried out to evaluate the influence of wood species and wood plastic ratio on the physical and mechanical properties of wood plastic composites (WPCs) produced from polyethylene terephthalate (PET) plastic bottle wastes and sawdust from three hardwood species, namely, Terminalia superba, Gmelina arborea, and Ceiba pentandra. The experimental WPCs were prepared from sawdust particle size classes of ≤ 0.5, 0.5 – 1.0, and 1.0 – 2.0 mm at wood/plastic ratios of 40:60, 50:50 and 60:40 (percentage by weight). The WPCs for each study variable combination were prepared in 3 replicates and laid out in a randomized complete block design (RCBD). The physical properties investigated water absorption (WA), linear expansion (LE) and thickness swelling (TS) while the mechanical properties evaluated were Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). The mean values for WA, LE and TS ranged from 1.07 to 34.04, 0.11 to 1.76 and 0.11 to 4.05 %, respectively. The mean values of the three physical properties increased with decrease in wood plastic ratio. Wood plastic ratio of 40:60 at each particle size class generally resulted in the lowest values while wood plastic ratio of 60:40 had the highest values for each of the three species. For each of the physical properties, T. superba had the least mean values followed by G. arborea, while the highest values were observed C. pentandra. The mean values for MOE and MOR ranged from 458.17 to 1875.67 and 2.64 to 18.39 N/mm2, respectively. The mean values of the two mechanical properties decreased with increase in wood plastic ratio. Wood plastic ratio of 40:60 at each wood particle size class generally had the highest values while wood plastic ratio of 60:40 had the least values for each of the three species. For each of the mechanical properties, C. pentandra had the highest mean values followed by G. arborea, while the least values were observed T. superba. There were improvements in both the physical and mechanical properties due to decrease in sawdust particle size class with the particle size class of ≤ 0.5 mm giving the best result. The results of the Analysis of variance revealed significant (P < 0.05) effects of the three study variables – wood species, sawdust particle size class and wood/plastic ratio on all the physical and mechanical properties of the WPCs. It can be concluded from the results of this study that wood plastic composites from sawdust particle size ≤ 0.5 and PET plastic bottle wastes with acceptable physical and mechanical properties are better produced using 40:60 wood/plastic ratio, and that at this ratio, all the three species are suitable for the production of wood plastic composites.Keywords: polyethylene terephthalate plastic bottle wastes, wood plastic composite, physical properties, mechanical properties
Procedia PDF Downloads 208494 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 334493 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging
Authors: Chih-Chung Huang, Po-Hsun Peng
Abstract:
Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming
Procedia PDF Downloads 543492 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter
Abstract:
Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink
Procedia PDF Downloads 537491 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances
Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm
Abstract:
ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances
Procedia PDF Downloads 377490 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear
Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro
Abstract:
Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity
Procedia PDF Downloads 140489 Braille Code Matrix
Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane
Abstract:
According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.Keywords: Braille code, comsol software, microactuators, piezoelectric
Procedia PDF Downloads 360488 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 437487 Periodicity of Solutions to Impulsive Equations
Authors: Jin Liang, James H. Liu, Ti-Jun Xiao
Abstract:
It is known that there exist many physical phenomena where abrupt or impulsive changes occur either in the system dynamics, for example, ad-hoc network, or in the input forces containing impacts, for example, the bombardment of space antenna by micrometeorites. There are many other examples such as ultra high-speed optical signals over communication networks, the collision of particles, inventory control, government decisions, interest changes, changes in stock price, etc. These are impulsive phenomena. Hence, as a combination of the traditional initial value problems and the short-term perturbations whose duration can be negligible in comparison with the duration of the process, the systems with impulsive conditions (i.e., impulsive systems) are more realistic models for describing the impulsive phenomenon. Such a situation is also suitable for the delay systems, which include some of the past states of the system. So far, there have been a lot of research results in the study of impulsive systems with delay both in finite and infinite dimensional spaces. In this paper, we investigate the periodicity of solutions to the nonautonomous impulsive evolution equations with infinite delay in Banach spaces, where the coefficient operators (possibly unbounded) in the linear part depend on the time, which are impulsive systems in infinite dimensional spaces and come from the optimal control theory. It was indicated that the study of periodic solutions for these impulsive evolution equations with infinite delay was challenging because the fixed point theorems requiring some compactness conditions are not applicable to them due to the impulsive condition and the infinite delay. We are happy to report that after detailed analysis, we are able to combine the techniques developed in our previous papers, and some new ideas in this paper, to attack these impulsive evolution equations and derive periodic solutions. More specifically, by virtue of the related transition operator family (evolution family), we present a Poincaré operator given by the nonautonomous impulsive evolution system with infinite delay, and then show that the operator is a condensing operator with respect to Kuratowski's measure of non-compactness in a phase space by using an Amann's lemma. Finally, we derive periodic solutions from bounded solutions in view of the Sadovskii fixed point theorem. We also present a relationship between the boundedness and the periodicity of the solutions of the nonautonomous impulsive evolution system. The new results obtained here extend some earlier results in this area for evolution equations without impulsive conditions or without infinite delay.Keywords: impulsive, nonautonomous evolution equation, optimal control, periodic solution
Procedia PDF Downloads 257486 A Heteroskedasticity Robust Test for Contemporaneous Correlation in Dynamic Panel Data Models
Authors: Andreea Halunga, Chris D. Orme, Takashi Yamagata
Abstract:
This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel-data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: (i) either N is fixed as T→∞; or, (ii) N²/T→0, as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would provide an adequate guide to finite sample performance when T/N is "small". Because of this, we also propose and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.Keywords: cross-section correlation, time-series heteroskedasticity, dynamic panel data, heteroskedasticity robust Breusch-Pagan test
Procedia PDF Downloads 436485 The Impact of Mergers and Acquisitions on Financial Deepening in the Nigerian Banking Sector
Authors: Onyinyechi Joy Kingdom
Abstract:
Mergers and Acquisitions (M&A) have been proposed as a mechanism through which, problems associated with inefficiency or poor performance in financial institution could be addressed. The aim of this study is to examine the proposition that recapitalization of banks, which encouraged Mergers and Acquisitions in Nigeria banking system, would strengthen the domestic banks, improve financial deepening and the confidence of depositors. Hence, this study examines the impact of the 2005 M&A in the Nigerian-banking sector on financial deepening using mixed method (quantitative and qualitative approach). The quantitative process of this study utilised annual time series for financial deepening indicator for the period of 1997 to 2012. While, the qualitative aspect adopted semi-structured interview to collate data from three merged banks and three stand-alone banks to explore, understand and complement the quantitative results. Furthermore, a framework thematic analysis is employed to analyse the themes developed using NVivo 11 software. Using the quantitative approach, findings from the equality of mean test (EMT) used suggests that M&A have significant impact on financial deepening. However, this method is not robust enough given its weak validity as it does not control for other potential factors that may determine financial deepening. Thus, to control for other factors that may affect the level of financial deepening, a Multiple Regression Model (MRM) and Interrupted Times Series Analysis (ITSA) were applied. The coefficient for M&A dummy turned negative and insignificant using MRM. In addition, the estimated linear trend of the post intervention when ITSA was applied suggests that after M&A, the level of financial deepening decreased annually; however, this was statistically insignificant. Similarly, using the qualitative approach, the results from the interview supported the quantitative results from ITSA and MRM. The result suggests that interest rate should fall when capital base is increased to improve financial deepening. Hence, this study contributes to the existing literature the importance of other factors that may affect financial deepening and the economy when policies that will enhance bank performance and the economy are made. In addition, this study will enable the use of valuable policy instruments relevant to monetary authorities when formulating policies that will strengthen the Nigerian banking sector and the economy.Keywords: mergers and acquisitions, recapitalization, financial deepening, efficiency, financial crisis
Procedia PDF Downloads 402484 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 125