Search results for: process virtualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15345

Search results for: process virtualization

12555 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 166
12554 Sustainable Solid Waste Management Solutions for Asian Countries Using the Potential in Municipal Solid Waste of Indian Cities

Authors: S. H. Babu Gurucharan, Priyanka Kaushal

Abstract:

Majority of the world's population is expected to live in the Asia and Pacific region by 2050 and thus their cities will generate the maximum waste. India, being the second populous country in the world, is an ideal case study to identify a solution for Asian countries. Waste minimisation and utilisation have always been part of the Indian culture. During rapid urbanisation, our society lost the art of waste minimisation and utilisation habits. Presently, Waste is not considered as a resource, thus wasting an opportunity to tap resources. The technologies in vogue are not suited for effective treatment of large quantities of generated solid waste, without impacting the environment and the population. If not treated efficiently, Waste can become a silent killer. The article is trying to highlight the Indian municipal solid waste scenario as a key indicator of Asian waste management and recommend sustainable waste management and suggest effective solutions to treat the Solid Waste. The methods followed during the research were to analyse the solid waste data on characteristics of solid waste generated in Indian cities, then evaluate the current technologies to identify the most suitable technology in Indian conditions with minimal environmental impact, interact with the technology technical teams, then generate a technical process specific to Indian conditions and further examining the environmental impact and advantages/ disadvantages of the suggested process. The most important finding from the study was the recognition that most of the current municipal waste treatment technologies being employed, operate sub-optimally in Indian conditions. Therefore, the study using the available data, generated heat and mass balance of processes to arrive at the final technical process, which was broadly divided into Waste processing, Waste Treatment, Power Generation, through various permutations and combinations at each stage to ensure that the process is techno-commercially viable in Indian conditions. Then environmental impact was arrived through secondary sources and a comparison of environmental impact of different technologies was tabulated. The major advantages of the suggested process are the effective use of waste for resource generation both in terms of maximised power output or conversion to eco-friendly products like biofuels or chemicals using advanced technologies, minimum environmental impact and the least landfill requirement. The major drawbacks are the capital, operations and maintenance costs. The existing technologies in use in Indian municipalities have their own limitations and the shortlisted technology is far superior to other technologies in vogue. Treatment of Municipal Solid Waste with an efficient green power generation is possible through a combination of suitable environment-friendly technologies. A combination of bio-reactors and plasma-based gasification technology is most suitable for Indian Waste and in turn for Asian waste conditions.

Keywords: calorific value, gas fermentation, landfill, municipal solid waste, plasma gasification, syngas

Procedia PDF Downloads 188
12553 Improving the Technology of Assembly by Use of Computer Calculations

Authors: Mariya V. Yanyukina, Michael A. Bolotov

Abstract:

Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.

Keywords: accuracy, assembly, interacting dimension chains, turbine

Procedia PDF Downloads 375
12552 Institutional Preferences of Elites and Society: Paradoxes of Economic Development in Georgia

Authors: Inga Balarjishvili, Ia Natsvlishvili

Abstract:

Article aims to discuss the controversial character of the institutional preferences of elites and society in modern Georgia. Desktop research method is used to formulate the findings and analyze the outcomes. It is accepted that transformation process in Post-Soviet Georgia went with the prevalence of elites’ institutional preferences over the needs of the society that induced voluntarism in the process of formation of institutions. Hypothesis of 'quasi-inclusion trap' is put forward in the article as an effect of authoritarian modernization that is proved by instable paces of wealth and economic growth in the post-authoritarian period. On the one hand, monopolization of institutional choice by the elites, blocking formation of inclusive political and economic institutions for fear of losing status-quo worsen perspectives for achieving free availability regime. On the other hand, consciousness of the society is dominated by informal institutions, judicial nihilism and orientation on 'self-survival values.' This hinders its consolidation as a 'collective principal' against 'institutional utilitarianism,' result of which is hindered economic development.

Keywords: elites, hypothesis of 'quasi-inclusion trap', institutional preferences, post-Soviet Georgia

Procedia PDF Downloads 259
12551 Evolution Mechanism of the Formation of Rock Heap under Seismic Action and Analysis on Engineering Geological Structure

Authors: Jian-Xiu Wan, Yao Yin

Abstract:

In complex terrain and poor geological conditions areas, Railway, highway and other transportation constructions are still strongly developing. However, various geological disasters happened such as landslide, rock heap and so on. According to the results of geological investigation, the form of skirt (trapezoidal), semicircle and triangle rock heaps are mainly due to complex internal force and external force, in a certain extent, which is related to the terrain, the nature of the rock mass, the supply area and the surface shape of rock heap. Combined with the above factors, discrete element numerical simulation of rock mass is established under different terrain conditions based on 3DEC, and accelerated formation process of rock heap under seismic action is simulated. The fragmentation structure supply area is calculated, in which the most dangerous area is located. At the same time, the formation mechanism and development process are studied in different terrain conditions, and the structure of rock heap is judged by section, which can provide a strong theoretical and technical support for the prevention and control of geological disasters.

Keywords: 3DEC, fragmentation structure, rock heap, slope, seismic action

Procedia PDF Downloads 301
12550 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 195
12549 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris

Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić

Abstract:

Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.

Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris

Procedia PDF Downloads 156
12548 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: analytics, digitization, industry 4.0, manufacturing

Procedia PDF Downloads 116
12547 A Semi-Automatic Mechanism Used in the Peritoneal Dialysis Connection

Authors: I-En Lin, Feng-Jung Yang

Abstract:

In addition to kidney transplant, renal replacement therapy involves hemodialysis and peritoneal dialysis (PD). PD possesses advantages such as maintaining stable physiological blood status and blood pressure, alleviating anemia, and improving mobility, which make it an ideal method for at-home dialysis treatment. However, potential danger still exists despite the numerous advantages of PD, particularly when patients require dialysis exchange four to five times a day, during which improper operation can easily lead to peritonitis. The process of draining and filling is called an exchange and takes about 30 to 40 minutes. Connecting the transfer set requires sterile technique. Transfer set may require a new cap each time that it disconnects from the bag after an exchange. There are many chances to get infection due to unsafe behavior (ex: hand tremor, poor eyesight and weakness, cap fall-down). The proposed semi-automatic connection mechanism used in the PD can greatly reduce infection chances. This light-weight connection device is portable. The device also does not require using throughout the entire process. It is capable of significantly improving quality of life. Therefore, it is very promising to adopt in home care application.

Keywords: automatic connection, catheter, glomerulonephritis, peritoneal dialysis

Procedia PDF Downloads 238
12546 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma

Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim

Abstract:

Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.

Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave

Procedia PDF Downloads 343
12545 Systems Engineering and Project Management Process Modeling in the Aeronautics Context: Case Study of SMEs

Authors: S. Lemoussu, J. C. Chaudemar, R. A. Vingerhoeds

Abstract:

The aeronautics sector is currently living an unprecedented growth largely due to innovative projects. In several cases, such innovative developments are being carried out by Small and Medium sized-Enterprises (SMEs). For instance, in Europe, a handful of SMEs are leading projects like airships, large civil drones, or flying cars. These SMEs have all limited resources, must make strategic decisions, take considerable financial risks and in the same time must take into account the constraints of safety, cost, time and performance as any commercial organization in this industry. Moreover, today, no international regulations fully exist for the development and certification of this kind of projects. The absence of such a precise and sufficiently detailed regulatory framework requires a very close contact with regulatory instances. But, SMEs do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses additional challenges for those SMEs that have system integration responsibilities and that must provide all the necessary means of compliance to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The final objective of our research is thus to provide a methodological framework supporting SMEs in their development taking into account recent innovation and institutional rules of the sector. We aim to provide a contribution to the problematic by developing a specific Model-Based Systems Engineering (MBSE) approach. Airspace regulation, aeronautics standards and international norms on systems engineering are taken on board to be formalized in a set of models. This paper presents the on-going research project combining Systems Engineering and Project Management process modeling and taking into account the metamodeling problematic.

Keywords: aeronautics, certification, process modeling, project management, SME, systems engineering

Procedia PDF Downloads 169
12544 EFL Teachers’ Sequential Self-Led Reflection and Possible Modifications in Their Classroom Management Practices

Authors: Sima Modirkhameneh, Mohammad Mohammadpanah

Abstract:

In the process of EFL teachers’ development, self-led reflection (SLR) is thought to have an imperative role because it may help teachers analyze, evaluate, and contemplate what is happening in their classes. Such contemplations can not only enhance the quality of their instruction and provide better learning environments for learners but also improve the quality of their classroom management (CM). Accordingly, understanding the effect of teachers’ SLR practices may help us gain valuable insights into what possible modifications SLR may bring about in all aspects of EFL teachers' practitioners, especially their CM. The main purpose of this case study was, thus, to investigate the impact of SLR practices of 12 Iranian EFL teachers on their CM based on the universal classroom management checklist (UCMC). In addition, another objective of the current study was to have a clear image of EFL teachers’ perceptions of their own SLR practices and their possible outcomes. By conducting repeated reflective interviews, observations, and feedback of the participants over five teaching sessions, the researcher analyzed the outcomes qualitatively through the process of meaning categorization and data interpretation based on the principles of Grounded Theory. The results demonstrated that EFL teachers utilized SLR practices to improve different aspects of their language teaching skills and CM in different contexts. Almost all participants had positive comments and reactions about the effect of SLR on their CM procedures in different aspects (expectations and routines, behavior-specific praise, error corrections, prompts and precorrections, opportunity to respond, strengths and weaknesses of CM, teachers’ perception, CM ability, and learning process). Otherwise stated, results implied that familiarity with the UCMC criteria and reflective practices contributes to modifying teacher participants’ perceptions about their CM procedure and utilizing the reflective practices in their teaching styles. The results are thought to be valuably beneficial for teachers, teacher educators, and policymakers, who are recommended to pay special attention to the contributions as well as the complexity of reflective teaching. The study concludes with more detailed results and implications and useful directions for future research.

Keywords: classroom management, EFL teachers, reflective practices, self-led reflection

Procedia PDF Downloads 61
12543 Optimal Planning of Transmission Line Charging Mode During Black Start of a Hydroelectric Unit

Authors: Mohammad Reza Esmaili

Abstract:

After the occurrence of blackouts, the most important subject is how fast the electric service is restored. Power system restoration is an immensely complex issue and there should be a plan to be executed within the shortest time period. This plan has three main stages of black start, network reconfiguration and load restoration. In the black start stage, operators and experts may face several problems, for instance, the unsuccessful connection of the long high-voltage transmission line connected to the electrical source. In this situation, the generator may be tripped because of the unsuitable setting of its line charging mode or high absorbed reactive power. In order to solve this problem, the line charging process is defined as a nonlinear programming problem, and it is optimized by using GAMS software in this paper. The optimized process is performed on a grid that includes a 250 MW hydroelectric unit and a 400 KV transmission system. Simulations and field test results show the effectiveness of optimal planning.

Keywords: power system restoration, black start, line charging mode, nonlinear programming

Procedia PDF Downloads 84
12542 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 127
12541 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate

Procedia PDF Downloads 444
12540 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes

Procedia PDF Downloads 381
12539 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning

Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah

Abstract:

In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.

Keywords: 3D imaging, shotcrete, surface model, tunnel stability

Procedia PDF Downloads 295
12538 In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models

Authors: Christine Fräulin, Daniela Schurr, Hamed Shahidi Rad, Gerrit Waters, Günter Rinke, Roland Dittmeyer, Michael Nilles

Abstract:

The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism.

Keywords: in-situ laser raman spectroscopy, space resolved kinetic measurements, homogeneous catalysis, chemistry

Procedia PDF Downloads 337
12537 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process

Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak

Abstract:

Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.

Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds

Procedia PDF Downloads 245
12536 Teacher Education: Teacher Development and Support

Authors: Khadem Hichem

Abstract:

With the new technology challenges, dynamics and challenges of the contemporary world, most teachers are struggling to maintain effective and successful teaching /learning environment for learners. Teachers as a key to the success of reforms in the educational setting, they must improve their competencies to teach effectively. Many researchers emphasis on the ongoing professional development of the teacher by enhancing their experiences and encouraging their responsibility for learning, and thus promoting self-reliance, collaboration, and reflection. In short, teachers are considered as learners and they need to learn together. The educational system must support, both conceptually and financially, the teachers’ development as lifelong learners Teachers need opportunities to grow in language proficiency and in knowledge. Changing nature of language and culture in the world, all teachers must have opportunities to update their knowledge and practices. Many researchers in the field of foreign or additional languages indicate that teachers keep side by side of effective instructional practices and they need special support with the challenging task of developing and administering proficiency tests to their students. For significant change to occur, each individual teacher’s needs must be addressed. The teacher must be involved experientially in the process of development, since, by itself, knowledge of how to change does not mean change will be initiated. For improvement to occur, new skills have to be guided, practiced, and reflected upon in collaboration with colleagues. Clearly, teachers are at different places developmentally; therefore, allowances for various entry levels and individual differences need to be built into the professional development structure. Objectives must be meaningful to the participant and teacher improvement must be stated terms of student knowledge, student performance, and motivation. The most successful professional development process acknowledges the student-centered nature of good teaching. This paper highlights the importance of teacher professional development process and institutional supports as way to enhance good teaching and learning environment.

Keywords: teacher professional development, teacher competencies, institutional support, teacher education

Procedia PDF Downloads 358
12535 Preliminary Design and Aerodynamic Study of Hybrid Aerial Vehicle

Authors: Pratyush Agnihotri

Abstract:

This paper presents a comprehensive overview of the conceptual design process for a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Fixed-wing VTOL UAVs combine the advantages of rotary-wing aircraft, such as vertical take-off and landing capabilities, with the efficiency and speed of fixed-wing flight. The primary objective of this study is to explore the aerodynamic design principles that optimize performance parameters, including range, endurance, and stability while maintaining the VTOL capability. The design process involves selecting appropriate airfoils, optimizing wing configurations, and integrating propulsion systems suitable for both hovering and forward flight. Analytical methods are employed to evaluate aerodynamic performance, with a focus on lift-to-drag ratio, power requirements, and control strategies. The results highlight the challenges and trade-offs inherent in designing such hybrid aircraft, particularly in balancing the conflicting requirements of VTOL and fixed-wing flight. This study contributes to the development of efficient, versatile UAVs capable of operating in diverse environments.

Keywords: fixed wing, hybrid, VTOL, UAV

Procedia PDF Downloads 29
12534 Using Differentiation Instruction to Create a Personalized Experience

Authors: Valerie Yocco Rossi

Abstract:

Objective: The author will share why differentiation is necessary for all classrooms as well as strategies for differentiating content, process, and product. Through learning how to differentiate, teachers will be able to create activities and assessments to meet the abilities, readiness levels, and interests of all learners. Content and Purpose: This work will focus on how to create a learning experience for students that recognizes their different interests, abilities, and readiness levels by differentiating content, process, and product. Likewise, the best learning environments allow for choice. Choice boards allow students to select tasks based on interests. There can be challenging and basic tasks to meet the needs of various abilities. Equally, rubrics allow for personalized and differentiated assessments based on readiness levels and cognitive abilities. The principals of DI help to create a classroom where all students are learning to the best of their abilities. Outcomes: After reviewing the work, readers will be able to (1) identify the benefits of differentiated instruction; (2) convert traditional learning activities to differentiated ones; (3) differentiate, writing-based assessments.

Keywords: differentiation, personalized learning, design, instructional strategies

Procedia PDF Downloads 74
12533 E-Portfolios as a Means of Perceiving Students’ Listening and Speaking Progress

Authors: Heba Salem

Abstract:

This paper aims to share the researcher’s experience of using e-Portfolios as an assessment tool to follow up on students’ learning experiences and performance throughout the semester. It also aims at highlighting the importance of students’ self-reflection in the process of language learning. The paper begins by introducing the advanced media course, with its focus on listening and speaking skills, and introduces the students’ profiles. Then it explains the students’ role in the e-portfolio process as they are given the option to choose a listening text they studied throughout the semester and to choose a recorded oral production of their collection of artifacts throughout the semester. Students showcase and reflect on their progress in both listening comprehension and speaking. According to the research, re-listening to work given to them and to their production is a means of reflecting on both their progress and achievement. And choosing the work students want to showcase is a means to promote independent learning as well as self-expression. Students are encouraged to go back to the class learning outcomes in the process of choosing the work. In their reflections, students express how they met the specific learning outcome. While giving their presentations, students expressed how useful the experience of returning and going over what they covered to select one and going over their production as well. They also expressed how beneficial it was to listen to themselves and literally see their progress in both listening comprehension and speaking. Students also reported that they grasped more details from the texts than they did when first having it as an assignment, which coincided with one of the class learning outcomes. They also expressed the fact that they had more confidence speaking as well as they were able to use a variety of vocabulary and idiomatic expressions that students have accumulated. For illustration, this paper includes practical samples of students’ tasks and instructions as well as samples of their reflections. The results of students’ reflections coincide with what the research confirms about the effectiveness of the e-portfolios as a means of assessment. The employment of e-Portfolios has two-folded benefits; students are able to measure the achievement of the targeted learning outcomes, and teachers receive constructive feedback on their teaching methods.

Keywords: e-portfolios, assessment, self assessment, listening and speaking progress, foreign language, reflection, learning out comes, sharing experience

Procedia PDF Downloads 102
12532 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 130
12531 Way to Successful Enterprise Resource Planning System Implementation in Developing Countries: Case of Public Sector Unit

Authors: Suraj Kumar Mukti

Abstract:

Enterprise Resource Planning (ERP) system is a management tool to integrate all departments in an organization. It integrates business processes, manages resources efficiently and provides an appropriate decision support system to management. ERP system implementation is a typical and time taking process as well as money consuming process. Articles related to key success factors of ERP system implementation are available in the literature, but rare authors have focused on roadmap of successful ERP system implementation. Postponement is better if the organization is not ready to implement ERP system in better way; hence checking of organization’s preparation to adopt new system is an important prerequisite to ensure the success of ERP system implementation in an organization. Then comes what will be called as success of ERP system implementation. Benefits achieved by ERP system may be categorized into two categories; viz. tangible and intangible benefits. This research article presents a roadmap to ensure the success of ERP system implementation and benefits achieved through the new system as in success indicator. A case study is presented to evaluate the success and benefit achieved through the new system. The article gives a comprehensive approach to academicians and a roadmap to the organizations seeking to implement the ERP system.

Keywords: ERP system, decision support system, tangible, intangible

Procedia PDF Downloads 338
12530 Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents

Authors: Ying Zhao, Xingyan Bin

Abstract:

Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data.

Keywords: semi-supervised clustering, hierarchical agglomerative clustering, reference trees, distance constraints

Procedia PDF Downloads 553
12529 Process Optimization of Mechanochemical Synthesis for the Production of 4,4 Bipyridine Based MOFS using Twin Screw Extrusion and Multivariate Analysis

Authors: Ahmed Metawea, Rodrigo Soto, Majeida Kharejesh, Gavin Walker, Ahmad B. Albadarin

Abstract:

In this study, towards a green approach, we have investigated the effect of operating conditions of solvent assessed twin-screw extruder (TSE) for the production of 4, 4-bipyridine (1-dimensional coordinated polymer (1D)) based coordinated polymer using cobalt nitrate as a metal precursor with molar ratio 1:1. Different operating parameters such as solvent percentage, screw speed and feeding rate are considered. The resultant product is characterized using offline characterization methods, namely Powder X-ray diffraction (PXRD), Raman spectroscopy and scanning electron microscope (SEM) in order to investigate the product purity and surface morphology. A lower feeding rate increased the product’s quality as more resident time was provided for the reaction to take place. The most important influencing factor was the amount of liquid added. The addition of water helped in facilitating the reaction inside the TSE by increasing the surface area of the reaction for particles

Keywords: MOFS, multivariate analysis, process optimization, chemometric

Procedia PDF Downloads 164
12528 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali

Abstract:

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Keywords: biochar, biomass, cassava wastes, corn cob, pyrolysis

Procedia PDF Downloads 303
12527 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication

Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali

Abstract:

Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.

Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws

Procedia PDF Downloads 20
12526 The Decision-Making Process of the Central Banks of Brazil and India in Regional Integration: A Comparative Analysis of MERCOSUR and SAARC (2003-2014)

Authors: Andre Sanches Siqueira Campos

Abstract:

Central banks can play a significant role in promoting regional economic and monetary integration by strengthening the payment and settlement systems. However, close coordination and cooperation require facilitating the implementation of reforms at domestic and cross-border levels in order to benchmark with international standards and commitments to the liberal order. This situation reflects the normative power of the regulatory globalization dimension of strong states, which may drive or constrain regional integration. In the MERCOSUR and SAARC regions, central banks have set financial initiatives that could facilitate South America and South Asia regions to move towards convergence integration and facilitate trade and investments connectivities. This is qualitative method research based on a combination of the Process-Tracing method with Qualitative Comparative Analysis (QCA). This research approaches multiple forms of data based on central banks, regional organisations, national governments, and financial institutions supported by existing literature. The aim of this research is to analyze the decision-making process of the Central Bank of Brazil (BCB) and the Reserve Bank of India (RBI) towards regional financial cooperation by identifying connectivity instruments that foster, gridlock, or redefine cooperation. The BCB and The RBI manage the monetary policy of the largest economies of those regions, which makes regional cooperation a relevant framework to understand how they provide an effective institutional arrangement for regional organisations to achieve some of their key policies and economic objectives. The preliminary conclusion is that both BCB and RBI demonstrate a reluctance to deepen regional cooperation because of the existing economic, political, and institutional asymmetries. Deepening regional cooperation is constrained by the interests of central banks in protecting their economies from risks of instability due to different degrees of development between countries in their regions and international financial crises that have impacted the international system in the 21st century. Reluctant regional integration also provides autonomy for national development and political ground for the contestation of Global Financial Governance by Brazil and India.

Keywords: Brazil, central banks, decision-making process, global financial governance, India, MERCOSUR, connectivity, payment system, regional cooperation, SAARC

Procedia PDF Downloads 119