Search results for: Type-4 Composite Pressure Vessel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6066

Search results for: Type-4 Composite Pressure Vessel

3366 Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite

Authors: Reza Fazaeli, Reza Eslami-Farsani, Hamid Targhagh

Abstract:

Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.

Keywords: nanocomposite, cobalt ferrite, low density polyethylene, microwave absorption

Procedia PDF Downloads 264
3365 A Multi-Regional Structural Path Analysis of Virtual Water Flows Caused by Coal Consumption in China

Authors: Cuiyang Feng, Xu Tang, Yi Jin

Abstract:

Coal is the most important primary energy source in China, which exerts a significant influence on the rapid economic growth. However, it makes the water resources to be a constraint on coal industry development, on account of the reverse geographical distribution between coal and water. To ease the pressure on water shortage, the ‘3 Red Lines’ water policies were announced by the Chinese government, and then ‘water for coal’ plan was added to that policies in 2013. This study utilized a structural path analysis (SPA) based on the multi-regional input-output table to quantify the virtual water flows caused by coal consumption in different stages. Results showed that the direct water input (the first stage) was the highest amount in all stages of coal consumption, accounting for approximately 30% of total virtual water content. Regional analysis demonstrated that virtual water trade alleviated the pressure on water use for coal consumption in water shortage areas, but the import of virtual water was not from the areas which are rich in water. Sectoral analysis indicated that the direct inputs from the sectors of ‘production and distribution of electric power and heat power’ and ‘Smelting and pressing of metals’ took up the major virtual water flows, while the sectors of ‘chemical industry’ and ‘manufacture of non-metallic mineral products’ importantly but indirectly consumed the water. With the population and economic growth in China, the water demand-and-supply gap in coal consumption would be more remarkable. In additional to water efficiency improvement measures, the central government should adjust the strategies of the virtual water trade to address local water scarcity issues. Water resource as the main constraints should be highly considered in coal policy to promote the sustainable development of the coal industry.

Keywords: coal consumption, multi-regional input-output model, structural path analysis, virtual water

Procedia PDF Downloads 287
3364 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 114
3363 Nano Composite of Clay and Modified Ketonic Resin as Fire Retardant Polyol for Polyurethane

Authors: D. Önen, N. Kızılcan, B. Yıldız, A. Akar

Abstract:

In situ modified cyclohexanone-formaldehyde resins were prepared by addition of alendronic acid during resin preparation. Clay nanocomposites in ketonic resins were achieved by adding clay into the flask at the beginning of the resin preparation. The prepared resins were used for the synthesis of fire resistant polyurethanes foam. Both phosphorous containing modifier compound alendronic acid and nanoclay increases fire resistance of the cyclohexanone-formaldehyde resin thus polyurethane produced from these resins. The effect of the concentrations of alendronic acid and clay on the fire resistance and physical properties of polyurethanes was studied.

Keywords: alendronic acid, clay, ketonic resin, polyurethane

Procedia PDF Downloads 381
3362 Two Dimensional Numerical Analysis for the Seismic Response of the Geosynthetic-Reinforced Soil Integral Abutments

Authors: Dawei Shen, Ming Xu, Pengfei Liu

Abstract:

The joints between simply supported bridge decks and abutments need to be regularly repaired, which would greatly increase the cost during the service life of the bridge. Simply supported girder bridges suffered the most severe damage during earthquakes. Another type of bridge, the integral bridge, of which the superstructure and abutment are rigidly connected, was also used in some European countries. Because no bearings or joints exit in the integral bridge, this type of bridge could significantly reduce maintenance requirements and costs. However, conventional integral bridge usually result in high earth pressure on the abutment and surface settlement in the backfill. To solve these problems, a new type of integral bridge, geosynthetic-reinforced soil (GRS) integral bridge, was come up in recent years. This newly invented bridge has not been used in engineering practices. There was a lack of research on the seismic behavior of the conventional and new type of integral abutments. In addition, no common design code could be found for the calculation of seismic pressure of soil behind the abutment. This paper developed a dynamic constitutive model, which can consider the soil behaviors under cyclic loading. Numerical analyses of the seismic response of a full height integral bridge and GRS integral bridge were carried out using the two-dimensional numerical code, FLAC. A parametric study was also performed to investigate the soil-structure interaction. The results are presented below. The seismic responses of GRS integral bridge together with conventional simply supported bridge, GRS conventional bridge and conventional integral bridge were investigated. The results show that the GRS integral bridge holds the highest seismic stability, followed by conventional integral bridge, GRS simply supported bridge and conventional simply supported bridge. Compared with the integral bridge with 1 m thick abutments, the GRS integral bridge with 0.4 m thick abutments is subjected to a smaller bending moment, and the natural frequency and horizontal displacement remains almost the same. Geosynthetic-reinforcement will be more effective when the abutment becomes thinner or the abutment is higher.

Keywords: geosynthetic-reinforced soil integral bridge, nonlinear hysteretic model, numerical analysis, seismic response

Procedia PDF Downloads 449
3361 Efficient Corporate Image as a Strategy for Enhancing Profitability in Hotels

Authors: Lucila T. Magalong

Abstract:

The hotel industry has been using their corporate image and reputation to maintain service quality, customer satisfaction, and customer loyalty and to leverage themselves against competitors and facilitate their growth strategies. With the increasing pressure to perform, hotels have even created hybrid service strategy to fight in the niche markets across pricing and level-off service parameters.

Keywords: corporate image, hotel industry, service quality, customer expectations

Procedia PDF Downloads 447
3360 Investigation of Ductile Failure Mechanisms in SA508 Grade 3 Steel via X-Ray Computed Tomography and Fractography Analysis

Authors: Suleyman Karabal, Timothy L. Burnett, Egemen Avcu, Andrew H. Sherry, Philip J. Withers

Abstract:

SA508 Grade 3 steel is widely used in the construction of nuclear pressure vessels, where its fracture toughness plays a critical role in ensuring operational safety and reliability. Understanding the ductile failure mechanisms in this steel grade is crucial for designing robust pressure vessels that can withstand severe nuclear environment conditions. In the present study, round bar specimens of SA508 Grade 3 steel with four distinct notch geometries were subjected to tensile loading while capturing continuous 2D images at 5-second intervals in order to monitor any alterations in their geometries to construct true stress-strain curves of the specimens. 3D reconstructions of X-ray computed tomography (CT) images at high-resolution (a spatial resolution of 0.82 μm) allowed for a comprehensive assessment of the influences of second-phase particles (i.e., manganese sulfide inclusions and cementite particles) on ductile failure initiation as a function of applied plastic strain. Additionally, based on 2D and 3D images, plasticity modeling was executed, and the results were compared to experimental data. A specific ‘two-parameter criterion’ was established and calibrated based on the correlation between stress triaxiality and equivalent plastic strain at failure initiation. The proposed criterion demonstrated substantial agreement with the experimental results, thus enhancing our knowledge of ductile fracture behavior in this steel grade. The implementation of X-ray CT and fractography analysis provided new insights into the diverse roles played by different populations of second-phase particles in fracture initiation under varying stress triaxiality conditions.

Keywords: ductile fracture, two-parameter criterion, x-ray computed tomography, stress triaxiality

Procedia PDF Downloads 71
3359 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite

Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman

Abstract:

Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.

Keywords: electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation

Procedia PDF Downloads 209
3358 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach

Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius

Abstract:

The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.

Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics

Procedia PDF Downloads 129
3357 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution

Authors: Roli Saini, Pradeep Kumar

Abstract:

A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.

Keywords: carbofuran, coagulation, optimization, response surface methodology

Procedia PDF Downloads 301
3356 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle

Authors: Pawel Magryta, Mateusz Paszko

Abstract:

In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag

Procedia PDF Downloads 290
3355 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 245
3354 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies

Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo

Abstract:

Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.

Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system

Procedia PDF Downloads 12
3353 Extraction, Recovery and Bioactivities of Chlorogenic Acid from Unripe Green Coffee Cherry Waste of Coffee Processing Industry

Authors: Akkasit Jongjareonrak, Supansa Namchaiya

Abstract:

Unripe green coffee cherry (UGCC) accounting about 5 % of total raw material weight receiving to the coffee bean production process and is, in general, sorting out and dump as waste. The UGCC is known to rich in phenolic compounds such as caffeoylquinic acids, feruloylquinic acids, chlorogenic acid (CGA), etc. CGA is one of the potent bioactive compounds using in the nutraceutical and functional food industry. Therefore, this study aimed at optimization the extraction condition of CGA from UGCC using Accelerated Solvent Extractor (ASE). The ethanol/water mixture at various ethanol concentrations (50, 60 and 70 % (v/v)) was used as an extraction solvent at elevated pressure (10.34 MPa) and temperatures (90, 120 and 150 °C). The recovery yield of UGCC crude extract, total phenolic content, CGA content and some bioactivities of UGCC extract were investigated. Using of ASE at lower temperature with higher ethanol concentration provided higher CGA content in the UGCC crude extract. The maximum CGA content was observed at the ethanol concentration of 70% ethanol and 90 °C. The further purification of UGCC crude extract gave a higher purity of CGA with a purified CGA yield of 4.28 % (w/w, of dried UGCC sample) containing 72.52 % CGA equivalent. The antioxidant activity and antimicrobial activity of purified CGA extract were determined. The purified CGA exhibited the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity at 0.88 mg Trolox equivalent/mg purified CGA sample. The antibacterial activity against Escherichia coli was observed with the minimum inhibitory concentration (MIC) at 3.12 mg/ml and minimum bactericidal concentration (MBC) at 12.5 mg/ml. These results suggested that using of high concentration of ethanol and low temperature under elevated pressure of ASE condition could accelerate the extraction of CGA from UGCC. The purified CGA extract could be a promising alternative source of bioactive compound using for nutraceutical and functional food industry.

Keywords: bioactive, chlorogenic acid, coffee, extraction

Procedia PDF Downloads 244
3352 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 255
3351 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 347
3350 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 96
3349 Risk in the South African Sectional Title Industry: An Assurance Perspective

Authors: Leandi Steenkamp

Abstract:

The sectional title industry has been a part of the property landscape in South Africa for almost half a century, and plays a significant role in addressing the housing problem in the country. Stakeholders such as owners and investors in sectional title property are in most cases not directly involved in the management thereof, and place reliance on the audited annual financial statements of bodies corporate for decision-making purposes. Although the industry seems to be highly regulated, the legislation regarding accounting and auditing of sectional title is vague and ambiguous. Furthermore, there are no industry-specific auditing and accounting standards to guide accounting and auditing practitioners in performing their work and industry financial benchmarks are not readily available. In addition, financial pressure on sectional title schemes is often very high due to the fact that some owners exercise unrealistic pressure to keep monthly levies as low as possible. All these factors have an impact on the business risk as well as audit risk of bodies corporate. Very little academic research has been undertaken on the sectional title industry in South Africa from an accounting and auditing perspective. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on uncertainties, ambiguity and confusing aspects in current legislation regarding the audit of a sectional title property that may cause or increase audit and business risk. Secondly, empirical findings of risk-related aspects from the results of interviews with three groups of body corporate role-players will be discussed. The role-players were body corporate trustee chairpersons, body corporate managing agents and accounting and auditing practitioners of bodies corporate. Specific reference will be made to business risk and audit risk. Thirdly, practical recommendations will be made on possibilities of closing the audit expectation gap, and further research opportunities in this regard will be discussed.

Keywords: assurance, audit, audit risk, body corporate, corporate governance, sectional title

Procedia PDF Downloads 250
3348 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 216
3347 Design and Development of Chassis Made of Composite Material

Authors: P. Ravinder Reddy, Chaitanya Vishal Nalli, B. Tulja Lal, Anusha Kankanala

Abstract:

The chassis frame of an automobile with different sections have been considered for different loads. The orthotropic materials are selected to get the stability by varying fiber angle, fiber thickness, laminates, fiber properties, matrix properties and elastic ratios. The geometric model of chassis frame is carried out with parametric modelling approach. The analysis of chassis frame is carried out with ANSYS FEA software. The static and dynamic analysis of chassis frame is carried out by varying geometric parameters, orthotropic properties, materials and various sections. The static and dynamic response is discussed in detail in different sections.

Keywords: chassis frame, dynamic response, geometric model, orthotropic materials

Procedia PDF Downloads 316
3346 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 294
3345 Economic Effects of Maritime Environmental Legislation in the North and Baltic Sea Area: An Exploratory Sequential Mixed Methods Approach

Authors: Thea Freese

Abstract:

Environmental legislation to protect North and Baltic Sea areas from harmful vessel-source emissions has received increased political attention in recent years. Legislative measures are expected to show positive effects on the health of the marine environment and society. At the same time, compliance might increase the costs to industry and have effects on freight rates and volumes shipped with potential negative repercussions on the environment. Building on an exploratory sequential mixed methods approach, this research project will study the economic effects of maritime environmental legislation in two phases. In Phase I, exploratory in-depth interviews were conducted with 12 experts from various stakeholder groups aiming at identifying variables influencing the relationship between environmental legislation, freight rates and volumes shipped. Influencing factors like compliance, enforcement and modal shift were identified and studied. Phase II will comprise of a quantitative study conducted with the aim of verifying the theory build in Phase I and quantifying economic effects of rules on shipping pollution. Research in this field might inform policy-makers about determinants of behaviour of ship operators in the face of the law and might further the development of a comprehensive legal system for marine environmental protection. At the present stage of research, first tentative results from the qualitative phase may be examined and open research questions to be addressed in the quantitative phase as well as possible research designs for phase II may be discussed. Input from other researchers will be highly valuable at this point.

Keywords: clean shipping operations, compliance, maritime environmental legislation, maritime law and economics, mixed methods research, North and Baltic Sea area

Procedia PDF Downloads 356
3344 Research of Interaction between Layers of Compressed Composite Columns

Authors: Daumantas Zidanavicius

Abstract:

In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.

Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution

Procedia PDF Downloads 111
3343 Process Development for the Conversion of Organic Waste into Valuable Products

Authors: Ife O. Bolaji

Abstract:

Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.

Keywords: cellulose, hydrolysis, mixed culture, organic waste

Procedia PDF Downloads 349
3342 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 192
3341 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 127
3340 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: bias, expert, high risk industry, stress.

Procedia PDF Downloads 96
3339 Schedule Risk Management for Complex Projects: The Royal Research Ship: Sir David Attenborough Case Study

Authors: Chatelier Charlene, Oyegoke Adekunle, Ajayi Saheed, Jeffries Andrew

Abstract:

This study seeks to understand Schedule Risk Assessments as a priori for better performance whilst exploring the strategies employed to deliver complex projects like the New Polar research ship. This high-profile vessel was offered to Natural Environment Research Council and British Antarctic Survey (BAS) by Cammell Laird Shipbuilders. The Research Ship was designed to support science in extreme environments, with the expectancy to provide a wide range of specialist scientific facilities, instruments, and laboratories to conduct research over multiple disciplines. Aim: The focus is to understand the allocation and management of schedule risk on such a Major Project. Hypothesising that "effective management of schedule risk management" could be the most critical factor in determining whether the intended benefits mentioned are delivered within time and cost constraints. Objective 1: Firstly, the study seeks to understand the allocation and management of schedule risk in Major Projects. Objective 2: Secondly, it explores "effective management of schedule risk management" as the most critical factor determining the delivery of intended benefits. Methodology: This study takes a retrospective review of schedule risk management and how it influences project performance using a case study approach for the RRS (Royal Research Ship) Sir David Attenborough. Research Contribution: The outcomes of this study will contribute to a better understanding of project performance whilst building on its under-researched relationship to schedule risk management for complex projects. The outcomes of this paper will guide further research on project performance and enable the understanding of how risk-based estimates over time impact the overall risk management of the project.

Keywords: complexity, major projects, performance management, schedule risk management, uncertainty

Procedia PDF Downloads 79
3338 A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced.

Keywords: composite, hemp, interface, pull-out, processing, polypropylene, temperature

Procedia PDF Downloads 372
3337 Bonding Characteristics Between FRP and Concrete Substrates

Authors: Houssam A. Toutanji, Meng Han

Abstract:

This study focuses on the development of a fracture mechanics based-model that predicts the debonding behavior of FRP strengthened RC beams. In this study, a database includes 351 concrete prisms bonded with FRP plates tested in single and double shear were prepared. The existing fracture-mechanics-based models are applied to this database. Unfortunately the properties of adhesive layer, especially a soft adhesive layer, used on the specimens in the existing studies were not always able to found. Thus, the new model’s proposal was based on fifteen newly conducted pullout tests and twenty four data selected from two independent existing studies with the application of a soft adhesive layers and the availability of adhesive properties.

Keywords: carbon fiber composite materials, interface response, fracture characteristics, maximum shear stress, ultimate transferable load

Procedia PDF Downloads 245