Search results for: zinc metal
2684 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 1792683 The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions
Authors: N.Benachour, S. Chouchane, J. P. Chopart
Abstract:
The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties.Keywords: ammonium chloride, magnetic field, nickel-zinc alloys, co-deposition
Procedia PDF Downloads 2732682 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW
Authors: A. Nait Salah, M. Kaddami
Abstract:
This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.Keywords: ASME, base metal, micro-hardness test, submerged arc welding
Procedia PDF Downloads 1532681 Using Medicinal Herbs in Designing Green Roofs
Authors: Mohamad Javad Shakouri, Behshad Riahipour
Abstract:
Today, the use of medicinal herbs in architecture and green space has a significant effect on the process of calming human and increases the reliability coefficient of design and design flexibility. The current research was conducted with the aim to design green roof and investigate the effect of medicinal herbs such as cress, leek, fenugreek, beet, sweet fennel, green basil, purple basil, and purslane on reducing the number of environmental pollutants (copper, zinc, and cadmium). Finally, the weight of the dry plant and the concentration of elements zinc, lead, and cadmium in the herbs was measured. According to the results, the maximum dry weight (88.10 and 73.79 g) was obtained in beet and purslane respectively and the minimum dry weight (24.12 and 25.21) was obtained in purple basil, and green basil respectively. The maximum amount of element zinc (235 and 213 mg/kg) and the maximum amount of lead (143 mg/kg) were seen in sweet fennel and purple basil. In addition, the maximum amount of cadmium (13 mg/kg) was seen in sweet fennel and purple basil and the minimum amount of lead and cadmium (78 and 7 mg/kg) was seen in green basil, and the minimum amount of zinc (110 mg/kg) was seen in leek. On the other hand, the absorption amount of element lead in the herbs beet and purslane was the same and both absorbed 123 mg/kg lead. Environmentally, if green roofs are implemented extensively and in wide dimensions in urban spaces, they will purify and reduce pollution significantly by absorbing carbon dioxide and producing oxygen.Keywords: medicinal herbs, green space, green roof, heavy metals, lead, green basil
Procedia PDF Downloads 1632680 Spatial Variability of Heavy Metals in Sediments of Two Streams of the Olifants River System, South Africa
Authors: Abraham Addo-Bediako, Sophy Nukeri, Tebatso Mmako
Abstract:
Many freshwater ecosystems have been subjected to prolonged and cumulative pollution as a result of human activities such as mining, agricultural, industrial and human settlements in their catchments. The objective of this study was to investigate spatial variability of heavy metal pollution of sediments and possible sources of pollutants in two streams of the Olifants River System, South Africa. Stream sediments were collected and analysed for Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni) and Zinc (Zn) concentrations using inductively coupled plasma-mass mass spectrometry (ICP-MS). In both rivers, As, Cd, Cu, Pb and Zn fell within the concentration ranges recommended by CCME and ANZECC, while the concentrations of Cr and Ni exceeded the standards; the results indicated that Cr and Ni in the sediments originated from human activities and not from natural geological background. The index of geo-accumulation (Igeo) was used to assess the degree of pollution. The results of the geo-accumulation index evaluation showed that Cr and Ni were present in the sediments of the rivers at moderately to extremely polluted levels, while As, Cd, Cu, Pb and Zn existed at unpolluted to moderately polluted levels. Generally, heavy metal concentrations increased along the gradient in the rivers. The high concentrations of Cr and Ni in both rivers are of great concern, as previously these two rivers were classified to be supplying the Olifants River with water of good quality. There is a critical need, therefore to monitor heavy metal concentrations and distributions, as well as a comprehensive plan to prevent health risks, especially those communities still reliant on untreated water from the rivers, as sediment pollution may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments.Keywords: geo-accumulation index, heavy metals, sediment pollution, water quality
Procedia PDF Downloads 1642679 Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria
Authors: M. I. Mohammed, U. M. Ahmad
Abstract:
Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements.Keywords: mineral elements, coarse grains, staple food, Kano, Nigeria
Procedia PDF Downloads 2762678 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents
Authors: M. Sajjadnejad, H. Karimi Abadeh
Abstract:
In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.Keywords: corrosion, duty cycle, pulsed current, zinc
Procedia PDF Downloads 1222677 A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-Metal Alloys (Ni-Cr-T3, Verabond, Super Cast) and One Noble Alloy (X-33) in Metal-Ceramic Restorations
Authors: Ammar Neshati, Elham Hamidi Shishavan
Abstract:
Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and which causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the common VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, Verabond) and one group of noble alloy (x-33) were selected. The number of alloys in each group was 15. All the groups went through the casting process and change from wax pattern into metal disks. Then, VMK Master Porcelain was fired on each group. All the specimens were put in the UTM and a shear force was loaded until a fracture occurred. The fracture force was then recorded by the machine. The data was subjected to SPSS Version 16 and One-Way ANOVA was run to compare shear strength between the groups. Furthermore, the groups were compared two by two through running Tukey test. Results: The findings of this study revealed that shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 Mpa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87 Mpa or 283.87 N). Both Verabond (69.66 Mpa or 245 N) and x-33 alloys (66.53 Mpa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, the use of this low-cost alloy is recommended in metal-ceramic restorations.Keywords: shear bond, base-metal alloy, noble alloy, porcelain
Procedia PDF Downloads 4882676 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions
Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana
Abstract:
The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.Keywords: antimicrobial, home device, SEBS, zinc
Procedia PDF Downloads 3242675 Heavy Metals among Female Adolescents Attending Secondary Schools in Kano, Nigeria
Authors: I. Yunusa, M. A. Ibrahim, A. H. Yakasai, L. U. S. Ezeanyika
Abstract:
This study was conducted to examine the level of heavy metals among 192 apparently healthy female adolescents randomly selected from three different boarding secondary schools in the urban area of the most populated city in north-western part of Nigeria. Atomic absorption spectrometry (AAS) was used to determine the plasma levels of the heavy metals which include cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn). Our findings revealed the following mean±SD values for each of the heavy metal; 0.11±0.01µg Cd/L, 0.09 ± 0.02µg Co/L, 0.19 ± 0.02 µg Cr/L, 0.91 ± 0.02 µg Cu/L, 1.53 ± 0.31 µg Fe/L, 0.01 ± 0.04 µg Mn/L, 0.3.8 ± 0.04µg Mo/L, 0.04±0.01µg Ni/L, 0.04 ± 0.01µg Pb/L and 2.80 ± 0.24µg Zn/L respectively. It was concluded that toxicity from heavy metals did not exist among female adolescents.Keywords: heavy metals, female, adolescents, Nigeria
Procedia PDF Downloads 3892674 Phytoremediation of Heavy Metals by Phragmites Australis at Oeud Meboudja Annaba Algeria
Authors: Kleche Myriam, Ziane Nadia, Berrebbah Houria, Djebar Mohammed Reda
Abstract:
The Phytoremediation has now become a necessity. Thus, in our work, we are interested in the biological wastewater treatment of Oued Meboudja. The physicochemical analysis of water after treatment showed a significant reduction of suspended matter, COD and BOD5 and rate of metals in roots for example iron and zinc. We also highlighted some significant changes in biometric and physiological parameters such as increasing the number of roots and increased respiratory metabolism through the oxygen consumption in isolated roots of Phragmites australis, placed in a polluted environment.Keywords: phragmites australis, roots, phytoremediation, iron, zinc
Procedia PDF Downloads 4972673 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells
Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri
Abstract:
Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions
Procedia PDF Downloads 1502672 Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon
Authors: Khachatur V. Nerkararyan, Sergey I. Bozhevolnyi
Abstract:
We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal.Keywords: metal nanoparticle, localized surface plasmon, quantum dipole emitter, relaxation dynamics
Procedia PDF Downloads 4522671 Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide
Authors: S. Bentata, W. Benstaali, A. Abbad, H. A. Bentounes, B. Bouadjemi
Abstract:
The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic.Keywords: spin-up, spin-down, magnetic properties, transition metal, composite materials
Procedia PDF Downloads 2732670 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste
Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde
Abstract:
Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)
Procedia PDF Downloads 3072669 Substrate Coupling in Millimeter Wave Frequencies
Authors: Vasileios Gerakis, Fontounasios Christos, Alkis Hatzopoulos
Abstract:
A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures.Keywords: guard rings, metal pad coupling, millimeter wave frequencies, substrate noise,
Procedia PDF Downloads 5392668 Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface
Authors: Fatemeh Safdari, Amirnaser Shamkhali, Gholamabbas Parsafar
Abstract:
Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption.Keywords: adsorption, density functional theory, graphene, metal adatom
Procedia PDF Downloads 3482667 Increased Circularity in Metals Production Using the Ausmelt TSL Process
Authors: Jacob Wood, David Wilson, Stephen Hughes
Abstract:
The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.Keywords: ausmelt TSL, smelting, circular economy, energy efficiency
Procedia PDF Downloads 2442666 Structure-Based Virtual Screening to Identify CLDN4 Inhibitors
Authors: Jayanthi Sivaraman
Abstract:
Claudins are the important components of the tight junctions that play a key role in paracellular permeability. Among various members of Claudin family, Claudin 4 (CLDN4) is found to be overexpressed in ovarian, pancreatic carcinomas and other epithelial malignancies. Therefore, in this study, an attempt has been made to identify potent inhibitors for CLDN4 from the ZINC database using virtual screening, molecular docking and molecular dynamics simulations. A well refined molecular model of CLDN4 was built using Prime of Schrodinger v10.2(Template- PDB ID: 4P79). Approximately, 6 million compounds from ZINC database are subjected to high-throughput virtual screening (HTVS) against the active site of CLDN4. Molecular docking using GLIDE predicted ARG31, ASN142, ASP146 and ARG158 as critically important residues. Furthermore, three compounds from ZINC database (ZINC96331839, ZINC36533519 and ZINC75819394) showed highly promising ADME properties and binding affinity with stable conformation. The therapeutic efficiency of these lead compounds is evaluated and confirmed by in-vitro and in-vivo studies which leads to the development of novel anti-cancer drugs.Keywords: ADME property, inhibitors, molecular docking, virtual screening
Procedia PDF Downloads 3332665 Equilibrium, Kinetics, and Thermodynamic Studies on Heavy Metal Biosorption by Trichoderma Species
Authors: Sobia Mushtaq, Firdaus E. Bareen, Asma Tayyeb
Abstract:
This study conducted to investigate the metal biosorption potential of indigenous Trichoderma species (T. harzianum KS05T01, T. longibrachiatum KS09T03, Trichoderma sp KS17T09., T. viridi KS17T011, T. atrobruneo KS21T014, and T. citrinoviride) that have been isolated from contaminated soil of Kasur Tannery Waste Management Agency. The effect of different biosorption parameters as initial metal ion concentration, pH, contact time , and temperature of incubation was investigated on the biosorption potential of these species. The metal removal efficiency and (E%) and metal uptake capacity (mg/g) increased along with the increase of initial metal concentration in media. The Trichoderma species can tolerate and survive under heavy metal stress up to 800mg/L. Among the two isotherm models were applied on the biosorption data, Langmuir isotherm model and Freundlich isotherm model, maximum correlation coefficients values (R 2 ) of 1was found for Langmuir model, which showed the better fitted model for the Trichoderma biosorption. The metal biosorption was increased with the increase of temperature and pH of the media. The maximum biosorption was observed between 25-30 o C and at pH 6.-7.5, while the biosorption rate was increased from 3-6 days of incubation, and then the rate of biosorption was slowed down. The biosorption data was better fitted for Pseudo kinetic first order during the initial days of biosorption. Thermodynamic parameters as standard Gibbs free energy (G), standard enthalpy change (H), and standard entropy (S) were calculated. The results confirmed the heavy metal biosorption by Trichoderma species was endothermic and spontaneous reaction in nature. The FTIR spectral analysis and SEM-EDX analysis of the treated and controlled mycelium revealed the changes in the active functional sites and morphological variations of the outer surface. The data analysis envisaged that high metal tolerance exhibited by Trichoderma species indicates its potential as efficacious and successful mediator for bioremediation of the heavy metal polluted environments.Keywords: heavy metal, fungal biomass, biosorption, kinetics
Procedia PDF Downloads 1222664 Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions
Authors: Yalçın Kılıç, İbrahim Kani
Abstract:
The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated.Keywords: metal complex, OSSO-type ligand, catalysis, oxidation
Procedia PDF Downloads 1002663 Study on Status of Child Labour in Metal Fabrication Industries of Kathmandu Valley
Authors: Bikas Chandra Bhattarai
Abstract:
Child labour is the serious issue all over the world. In Nepal, many children are working in different structured and unstructured sector. Metal fabrication is one of the sectors where many children are involved. The present study is carried out to focus on the overall socio-economic condition, psychological aspect, working environment condition and welfare of the child labour. Metal fabrication factories from Kirtipur, Chovar Area, Gongabu, Sitapaila and Sankhamul area of Kathmandu municipality were selected for the study. The structured questionnaire was prepared, and overall 55 children under age 16 were interviewed. Working in metal fabrication factory is risky job for children. The main reason behind child labour is poverty. The working environment in the metal fabrication factory was not found satisfactory. Children are exposed to various types of physical and chemical hazards. Factories are not paying proper attention to safety condition at the workplace. Large number of children is attracted towards smoking and drinking alcohol leading to unnecessary expense of their income. There should be the provision of regular health check up and insurance to the working children. Monitoring from the government level should be implemented for the betterment of working children.Keywords: child labour, Kathmandu, Nepal, metal fabrication
Procedia PDF Downloads 3312662 Spectrofluorimetric Investigation of Copper (II), Cobalt (II), Calcium (II), and Ferric (III) Influence on the Ciprofloxacin Binding to Bovine Serum Albumin
Authors: Ahmed K. Youssef, Shawkat M. B. Aly
Abstract:
The interaction between ciprofloxacin and bovine serum albumin (BSA) was investigated by UV-Visible absorption and fluorescence spectroscopy. The influence of Cu²⁺ Ca²⁺, Co²⁺, and Fe³⁺ on the Cip-BSA interaction was investigated. The quenching of the BSA fluorescence emission in presence of ciprofloxacin as well as the influence of metal ions on the interaction was analyzed using the Stern-Volmer equation. The Stern-Volmer quenching constant, Kₛᵥ was calculated in presence and absence of the metal ions at the physiological pH of 7.4 using phosphate buffer. The experimental results showed that interaction mainly static in nature and quenching rate constant is decreased in presence of the studied metal ions with exception of Cu²⁺ ions. The decrease observed in the Kₛᵥ values in presence of Co²⁺, Ca²⁺, and Fe³⁺ can be understood on basis of competition between these metal and Cip when both of them existed in the BSA solution. Cu²⁺ induces interaction between Cip and BSA at faster quenching rates as inferred from the observed increase in the Kₛᵥ value. This allowed us to propose that copper (II) ions are directly involved in the process of Cip binding to BSA. The binding constant for Cip on BSA was determined and the metal ions effect on it was examined as well and their values were in line with the Kₛᵥ values.Keywords: bovine serum albumin, ciprofloxacin, fluorescence, metal ions effect
Procedia PDF Downloads 3922661 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities
Authors: Emineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity
Procedia PDF Downloads 662660 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles
Authors: Kirit Siddhapara, Dimple Shah
Abstract:
In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds
Procedia PDF Downloads 4322659 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed
Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera
Abstract:
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.Keywords: zinc oxide, chemical spray, thin films, TCO
Procedia PDF Downloads 5032658 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process
Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae
Abstract:
This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: CMOS, vertical hall device, current mode, COMSOL
Procedia PDF Downloads 3032657 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds
Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed
Abstract:
The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.Keywords: acoustic streaming, enhancing heat transfer, laminar flow, metal foam, ultrasound
Procedia PDF Downloads 1382656 [Keynote Talk]: Heavy Metals in Marine Sediments of Gulf of Izmir
Authors: E. Kam, Z. U. Yümün, D. Kurt
Abstract:
In this study, sediment samples were collected from four sampling sites located on the shores of the Gulf of İzmir. In the samples, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled, plasma-optical emission spectrometry (ICP-OES). The average heavy metal concentrations were: Cd < LOD (limit of detection); Co 14.145 ± 0.13 μg g−1; Cr 112.868 ± 0.89 μg g−1; Cu 34.045 ± 0.53 μg g−1; Mn 481.43 ± 7.65 μg g−1; Ni 76.538 ± 3.81 μg g−1; Pb 11.059 ± 0.53 μg g−1 and Zn 140.133 ± 1.37 μg g−1, respectively. The results were compared with the average abundances of these elements in the Earth’s crust. The measured heavy metal concentrations can serve as reference values for further studies carried out on the shores of the Aegean Sea.Keywords: heavy metal, Aegean Sea, ICP-OES, sediment
Procedia PDF Downloads 1842655 Production of (V-B) Reinforced Fe Matrix Composites
Authors: Kerim Emre Öksüz, Mehmet Çevik, A. Enbiya Bozdağ, Ali Özer, Mehmet Şimşir
Abstract:
Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route.Keywords: hardness, metal matrix composite (MMC), microstructure, powder metallurgy
Procedia PDF Downloads 799