Search results for: polymeric chain friction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3032

Search results for: polymeric chain friction

2792 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 294
2791 Application of Blockchain on Manufacturing Process Control and Pricing Policy

Authors: Chieh Lee

Abstract:

Today, supply chain managers face extensive disruptions in raw material pricing, transportation block, and quality issue due to product complexity. While digitalization might help managers to mitigate the disruption risk and increase supply chain resilience by sharing information between sellers and buyers through the supply chain, entities are reluctant to build such a system. The main reason is it is not clear what information should be shared and who has access to the stored information. In this research, we propose a smart contract built by blockchain technology. This contract helps both buyer and seller to identify the type of information, the access to the information, and how to trace the information. This contract helps managers control their orders through the supply chain and address any disruption they see fit. Furthermore, with the same smart contract, the supplier can track the production process of an order and increase production efficiency by eliminating waste.

Keywords: blockchain, production process, smart contract, supply chain resilience

Procedia PDF Downloads 80
2790 Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot

Authors: Hassan Mohammad Alkomy, Hesham Elkaranshawy, Ahmed Ibrahim Ashour, Khaled Tawfik Mohamed

Abstract:

For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.

Keywords: dynamical system, friction, multibody system, painlevé paradox, robotic systems, sliding robots, unilateral constraint

Procedia PDF Downloads 455
2789 Investigation of the Brake Force Distribution in Passenger Cars

Authors: Boukhris Lahouari, Bouchetara Mostefa

Abstract:

The active safety of a vehicle is mainly influenced by the properties of the installed braking system. With the increase in road traffic density and travel speeds, increasingly stringent requirements are placed on the vehicle's behaviour during braking. The achievable decelerations are limited by the physical aspect characterized by the coefficient of friction between the tires and the ground. As a result, it follows that an optimized distribution of braking forces becomes necessary for a better use of friction coefficients. This objective could only be achieved if sufficient knowledge is available on the theory of vehicle dynamics during braking and on current standards for the approval of braking systems. This will facilitate the development of a braking force calculation algorithm that will enable an optimized distribution of braking forces to be achieved. Operating safety is conditioned by the requirements of efficiency, progressiveness, regularity or fidelity of a braking system without obviously neglecting the recommendations imposed by the legislator.

Keywords: brake force distribution, distribution diagram, friction coefficient, brake by wire

Procedia PDF Downloads 80
2788 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage

Authors: Mona Baniahmadi, Saied Haghanifar

Abstract:

Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.

Keywords: cost, competitive advantage, radio frequency identification, supply chain

Procedia PDF Downloads 277
2787 Management of Small-Scale Companies in Nigeria. Case Study of Problems Faced by Entrepreneurs

Authors: Aderemi, Moses Aderibigbe

Abstract:

The supply chain of a manufacturing company can be classified into three categories, namely: 1) supplier chain, these are a network of suppliers of raw materials, machinery, and other requirements for daily operations for the company; 2) internal chain, which are departmental or functional relationships within the organization like production, finance, marketing, logistic and quality control departments all interacting together to achieve the goals and objective of the company; and 3) customer chain; these are networks used for products distribution to the final consumer which includes the product distributors and retailers in the marketplace as may be applicable. In a developing country like Nigeria, where government infrastructures are poor or, in some cases, none in existence, the survival of a small-scale manufacturing company often depends on how effectively its supply chain is managed. In Nigeria, suppliers of machinery and raw materials to most manufacturing companies are from low-cost but high-tech countries like China or India. The problem with the supply chain from these countries apart from the language barrier between these countries and Nigeria, is also that of product quality and after-sales support services. The internal chain also requires funding to employ an experienced and trained workforce to deliver the company’s goals and objectives effectively and efficiently, which is always a challenge for small-scale manufacturers, including product marketing. In Nigeria, the management of the supply chain by small-scale manufacturers is further complicated by unfavourable government policies. This empirical research is a review and analysis of the supply chain management of a small-scale manufacturing company located in Lagos, Nigeria. The company's performance for the past five years has been on the decline and company management thinks there is a need for a review of its supply chain management for business survival. The company’s supply chain is analyzed and compared with best global practices in this research, and recommendations are made to the company management. The research outcome justifies the company’s need for a strategic change in its supply chain management for business sustainability and provides a learning point to small-scale manufacturing companies from developing countries in Africa

Keywords: management, small scale, supply chain, companies, leaders

Procedia PDF Downloads 26
2786 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow

Authors: Itissam Abuiziah

Abstract:

In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.

Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers

Procedia PDF Downloads 188
2785 Planning a Supply Chain with Risk and Environmental Objectives

Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali

Abstract:

The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.

Keywords: environmental indicators, optimization, risk, supply chain

Procedia PDF Downloads 351
2784 Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer

Authors: Buti Suryabrahmam, V. A. Raghunathan

Abstract:

We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface.

Keywords: alcohols, bending rigidity, DMPC, lipid bilayers

Procedia PDF Downloads 148
2783 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc

Abstract:

Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, friction, process

Procedia PDF Downloads 147
2782 Effect of Longitudinal Fins on Air-Flow Characteristics for Wing-Shaped Tubes in Cross Flow

Authors: Sayed Ahmed El Sayed, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

A numerical study has been conducted to clarify fluid flow characteristics, pressure distributions, and skin friction coefficient over a wing-shaped tubes bundle in staggered arrangement with the placement of longitudinal fins (LF) at downstream position of the tube. The air-side Rea were at 1.8 x 103 to 9.7 x 103. The tubes bundle were employed with various fin height [hf] and fin thickness (δ) from (2 mm ≤ hf ≤ 12 mm) and (1.5 mm ≤ δ ≤ 3.5 mm) respectively at the considered Rea range. The flow pattern around the staggered wing-shaped tubes bundle was predicted using the commercial CFD FLUENT 6.3.26 software package. The distribution of average skin friction coefficient around wing-shaped tubes bundle is studied. Correlation of pressure drop coefficient Pdc and skin friction coefficient (Cf) in terms of Rea, design parameters for the studied cases were presented. Results indicated that the values of Pdc for hf = 6 mm are lower than these of NOF and hf = 2 mm by about 11 % and 13 % respectively for considered Rea range. Cf decreases as Rea increases. LFTH with hf = 6 mm offers lower form drag than that with hf = 12 mm and that of NOF. The lowest values of the pumping power are achieved for arrangements of hf = 6 mm for the considered Rea range. δ has negligible effect on skin friction coefficient, while has a slightly variation in ∆Pa. The wing-shaped tubes bundle heat exchanger with hf = 6 mm has the lowest values of ∆Pa, Pdc, Cf, and pumping power and hence the best performance comparing with the other bundles. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements.

Keywords: longitudinal fins, skin friction, flow characteristics, FLUENT, wing-shaped tubes

Procedia PDF Downloads 540
2781 Structural Analysis of Polymer Thin Films at Single Macromolecule Level

Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii

Abstract:

The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.

Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy

Procedia PDF Downloads 287
2780 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms

Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian

Abstract:

Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.

Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm

Procedia PDF Downloads 144
2779 A Review of Tribological Excellence of Bronze Alloys

Authors: Ram Dhani chauhan

Abstract:

Tribology is a term that was developed from the Greek words ‘tribos’ (rubbing) and ‘logy’ (knowledge). In other words, a study of wear, friction and lubrication of material is known as Tribology. In groundwater irrigation, the life of submersible pump components like impeller, bush and wear ring will depend upon the wear and corrosion resistance of casted material. Leaded tin bronze (LTB) is an easily castable material with good mechanical properties and tribological behaviour and is utilised in submersible pumps at large. It has been investigated that, as Sn content increases from 4-8 wt. % in LTB alloys, the hardness of the alloys increases and the wear rate decreases. Similarly, a composite of copper with 3% wt. Graphite (threshold limit of mix) has a lower COF (coefficient of friction) and the lowest wear rate. In LTB alloys, in the initial low-speed range, wear increases and in the higher range, it was found that wear rate decreases.

Keywords: coefficent of friction, coefficient of wear, tribology, leaded tin bronze

Procedia PDF Downloads 25
2778 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network

Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song

Abstract:

The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.

Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand

Procedia PDF Downloads 309
2777 Future of the Supply Chain Management

Authors: Mehmet Şimşek

Abstract:

In the rapidly changing market conditions, it is getting harder to survive without adapting new abilities. Technology and globalization have enabled foreign producers to enter into national markets, even local ones. For this reason there is now big competition among production companies for market share. Furthermore, competition has provided customer with broad range of options to choose from. To be able to survive in this environment, companies need to produce at low price and at high quality. The best way to succeed this is the efficient use of supply chain management that has started to get shaped by the needs of customers and the environment.

Keywords: cycle time, logistics, outsourcing, production, supply chain

Procedia PDF Downloads 483
2776 Asymptotic Analysis of the Viscous Flow through a Pipe and the Derivation of the Darcy-Weisbach Law

Authors: Eduard Marusic-Paloka

Abstract:

The Darcy-Weisbach formula is used to compute the pressure drop of the fluid in the pipe, due to the friction against the wall. Because of its simplicity, the Darcy-Weisbach formula became widely accepted by engineers and is used for laminar as well as the turbulent flows through pipes, once the method to compute the mysterious friction coefficient was derived. Particularly in the second half of the 20th century. Formula is empiric, and our goal is to derive it from the basic conservation law, via rigorous asymptotic analysis. We consider the case of the laminar flow but with significant Reynolds number. In case of the perfectly smooth pipe, the situation is trivial, as the Navier-Stokes system can be solved explicitly via the Poiseuille formula leading to the friction coefficient in the form 64/Re. For the rough pipe, the situation is more complicated and some effects of the roughness appear in the friction coefficient. We start from the Navier-Stokes system in the pipe with periodically corrugated wall and derive an asymptotic expansion for the pressure and for the velocity. We use the homogenization techniques and the boundary layer analysis. The approximation derived by formal analysis is then justified by rigorous error estimate in the norm of the appropriate Sobolev space, using the energy formulation and classical a priori estimates for the Navier-Stokes system. Our method leads to the formula for the friction coefficient. The formula involves resolution of the appropriate boundary layer problems, namely the boundary value problems for the Stokes system in an infinite band, that needs to be done numerically. However, theoretical analysis characterising their nature can be done without solving them.

Keywords: Darcy-Weisbach law, pipe flow, rough boundary, Navier law

Procedia PDF Downloads 353
2775 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method

Authors: Ashkan Nazari, Saied Taheri

Abstract:

Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.

Keywords: friction, finite element, multi-scale modeling, rubber

Procedia PDF Downloads 137
2774 Humanitarian Supply Chain Management: Extended Literature Review

Authors: Busra Gulnihan Dascıoglu, Ozalp Vayvay, Zeynep Tugce Kalender

Abstract:

Humanitarian supply chain management has gain popularity in recent years in research fields. The aim of this paper is to review the literature on humanitarian operations and crisis/disaster management from 2010 to latest researches in order to identify the current research and to provide direction for future research in this growing field. Researches are classified considering the research publication year, research fields. Articles from humanitarian supply chain management were reviewed, keywords were identified within a disaster management lifecycle framework. Research gaps are identified for future research areas.

Keywords: crisis, disaster, humanitarian supply chain management, relief operations

Procedia PDF Downloads 342
2773 Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions

Authors: Prashant S. Humnabad

Abstract:

The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time.

Keywords: FEA, thermal analysis, preheating, friction stir welding

Procedia PDF Downloads 189
2772 A Novel Hybrid Lubri-Coolant for Machining Difficult-to-Cut Ti-6Al-4V Alloy

Authors: Muhammad Jamil, Ning He, Wei Zhao

Abstract:

It is a rough estimation that the aerospace companies received orders of 37000 new aircraft, including the air ambulances, until 2037. And titanium alloys have a 15% contribution in modern aircraft's manufacturing owing to the high strength/weight ratio. Despite their application in the aerospace and medical equipment manufacturing industry, still, their high-speed machining puts a challenge in terms of tool wear, heat generation, and poor surface quality. Among titanium alloys, Ti-6Al-4V is the major contributor to aerospace application. However, its poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc., are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect regarding the hard-to-cut Ti-6Al-4V. Therefore, this study is devoted to exploring the effect of hybrid ethanol-ester oil MQL regarding the cutting temperature, surface integrity, and tool life. As the ethanol provides -OH group and ester oil of long-chain molecules provide a tribo-film on the tool-workpiece interface. This could be a green manufacturing alternative for the manufacturing industry.

Keywords: hybrid lubri-cooling, surface roughness, tool wear, MQL

Procedia PDF Downloads 85
2771 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management

Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal

Abstract:

Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.

Keywords: sustainable supply chain management, sustainable criteria, MCDM tools, AHP analysis, TOPSIS method

Procedia PDF Downloads 325
2770 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 417
2769 A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives.

Keywords: closed-loop design, closed-loop supply chain, design evaluation, supply chain management, sustainable design model

Procedia PDF Downloads 426
2768 Cost Diminution in Supply Chain of a Dairy Industry

Authors: Naveed Ahmed Khan

Abstract:

The ever increasing importance of food industry cannot be denied and especially in the wake of escalating population and prices both in developing and developed nations. Thus, this issue demands the attention of researchers especially in the area of supply chain to identify cost diminution waste eliminating supply chain practices in the said industry. For such purpose the 'Dairy Division' of Engro Foods Limited, one of the biggest food companies in Pakistan was taken into consideration in a case study manner. Based on the literature review and interviews following variables were obtained: energy, losses, maintenance, taxes, and logistics. Having studied the said variables, it was concluded that management of relevant industries operating in a comparable environment need to efficiently manage two major areas: energy and taxes. On the other hand, similar kind of other organizations could be benefited by adopting the proficient supply chain practices being observed at dairy division of Engro foods limited.

Keywords: cost diminution, supply chain, dairy industry, Engro Foods Limited

Procedia PDF Downloads 311
2767 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding

Authors: Khalil Aghapouramin

Abstract:

The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces

Keywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior

Procedia PDF Downloads 342
2766 Exploration of Community Space Environment Renewal Strategies Based on the Concept of Disaster Chain

Authors: Ma Chaoyang

Abstract:

With the acceleration of urbanization, old communities are facing renewal problems such as an aging material environment, declining living quality, and insufficient resilience. The once glorious old communities have become the most vulnerable areas in the city. Through a re-understanding of the ‘disaster chain’ and resilient communities, it is believed that considering the construction of resilient communities during community renewal is of great significance for promoting the sustainable development of communities. This article proposes renewal strategies for old communities based on the concept of preventing the occurrence of disaster chains. After analyzing the main demand characteristics of old communities, it proposes a reflection on improving community spatial safety resilience based on the ‘broken chain’ concept. In the four stages of ‘pre-disaster, mid-disaster, and post-disaster’, it elaborates that considering the occurrence of disaster chain in community renewal is the main content of research on spatial safety resilience construction and clarifies that community resilience is the idea and principle of responding with the process of disaster chain. The study focuses on the four dimensions of ‘pre-disaster, mid-disaster, and post-disaster’. This can provide ideas and references for resilience construction in community updates.

Keywords: community updates, disaster chain concept, community resilience, space environment

Procedia PDF Downloads 52
2765 Preparation of IPNs and Effect of Swift Heavy Ions Irradiation on their Physico-Chemical Properties

Authors: B. S Kaith, K. Sharma, V. Kumar, S. Kalia

Abstract:

Superabsorbent are three-dimensional networks of linear or branched polymeric chains which can uptake large volume of biological fluids. The ability is due to the presence of functional groups like –NH2, -COOH and –OH. Such cross-linked products based on natural materials, such as cellulose, starch, dextran, gum and chitosan, because of their easy availability, low production cost, non-toxicity and biodegradability have attracted the attention of Scientists and Technologists all over the world. Since natural polymers have better biocompatibility and are non-toxic than most synthetic one, therefore, such materials can be applied in the preparation of controlled drug delivery devices, biosensors, tissue engineering, contact lenses, soil conditioning, removal of heavy metal ions and dyes. Gums are natural potential antioxidants and are used as food additives. They have excellent properties like high solubility, pH stability, non-toxicity and gelling characteristics. Till date lot of methods have been applied for the synthesis and modifications of cross-linked materials with improved properties suitable for different applications. It is well known that ion beam irradiation can play a crucial role to synthesize, modify, crosslink or degrade polymeric materials. High energetic heavy ions irradiation on polymer film induces significant changes like chain scission, cross-linking, structural changes, amorphization and degradation in bulk. Various researchers reported the effects of low and heavy ion irradiation on the properties of polymeric materials and observed significant improvement in optical, electrical, chemical, thermal and dielectric properties. Moreover, modifications induced in the materials mainly depend on the structure, the ion beam parameters like energy, linear energy transfer, fluence, mass, charge and the nature of the target material. Ion-beam irradiation is a useful technique for improving the surface properties of biodegradable polymers without missing the bulk properties. Therefore, a considerable interest has been grown to study the effects of SHIs irradiation on the properties of synthesized semi-IPNs and IPNs. The present work deals with the preparation of semi-IPNs and IPNs and impact of SHI like O7+ and Ni9+ irradiation on optical, chemical, structural, morphological and thermal properties along with impact on different applications. The results have been discussed on the basis of Linear Energy Transfer (LET) of the ions.

Keywords: adsorbent, gel, IPNs, semi-IPNs

Procedia PDF Downloads 373
2764 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications

Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma

Abstract:

Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.

Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties

Procedia PDF Downloads 459
2763 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, friction coefficient, wear, SiC

Procedia PDF Downloads 345