Search results for: magnetic behavior
7453 Transfer of Electrical Energy by Magnetic Induction
Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa
Abstract:
Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor
Procedia PDF Downloads 5177452 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan
Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed
Abstract:
The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.Keywords: ERT, magnetic, mineralization, Red Sea, Sudan
Procedia PDF Downloads 4287451 Chitosan Magnetic Nanoparticles and Its Analytical Applications
Authors: Eman Alzahrani
Abstract:
Efficient extraction of proteins by removing interfering materials is necessary in proteomics, since most instruments cannot handle such contaminated sample matrices directly. In this study, chitosan-coated magnetic nanoparticles (CS-MNPs) for purification of myoglobin were successfully fabricated. First, chitosan (CS) was prepared by a deacetylation reaction during its extraction from shrimp-shell waste. Second, magnetic nanoparticles (MNPs) were synthesised, using the coprecipitation method, from aqueous Fe2+ and Fe3+ salt solutions by the addition of a base under an inert atmosphere, followed by modification of the surface of MNPs with chitosan. The morphology of the formed nanoparticles, which were about 23 nm in average diameter, was observed by transmission electron microscopy (TEM). In addition, nanoparticles were characterised using X-ray diffraction patterns (XRD), which showed the naked magnetic nanoparticles have a spinel structure and the surface modification did not result in phase change of the Fe3O4. The coating of MNPs was also demonstrated by scanning electron microscopy (SEM) analysis, energy dispersive analysis of X-ray spectroscopy (EDAX), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption behaviour of MNPs and CS-MNPs towards myoglobin was investigated. It was found that the difference in adsorption capacity between MNPs and CS-MNPs was larger for CS-MNPs. This result makes CS-MNPs good adsorbents and attractive for using in protein extraction from biological samples.Keywords: chitosan, magnetic nanoparticles, coprecipitation, adsorption
Procedia PDF Downloads 4157450 Impact of Gd³⁺ Substitution on Structural, Optical and Magnetic Properties of ZnFe₂O₄ Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda
Abstract:
In this report, the impact of Gd³⁺ substitution in ZnFe₂O₄ spinel ferrite nanoparticles on structural, optical and magnetic properties was investigated. ZnFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles were synthesized by honey-mediated sol-gel combustion method. X-ray diffraction, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy confirmed the formation of cubic spinel ferrite crystal structure. The morphology and elemental analysis were studied using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. UV-Visible reflectance spectroscopy revealed band gap variation with concentration of Gd³⁺ substitution in ZnFe₂O₄ nanoparticles. Magnetic property was studied using vibrating sample magnetometer at room temperature. The synthesized spinel ferrite nanoparticles showed ferromagnetic behaviour. The evaluated magnetic parameters such as saturation magnetization, coercivity and remanence showed variation with Gd³⁺ substitution in spinel ferrite nanoparticles. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: sol-gel combustion method, nanoparticles, magnetic property, optical property
Procedia PDF Downloads 2927449 Numerical Computation of Specific Absorption Rate and Induced Current for Workers Exposed to Static Magnetic Fields of MRI Scanners
Authors: Sherine Farrag
Abstract:
Currently-used MRI scanners in Cairo City possess static magnetic field (SMF) that varies from 0.25 up to 3T. More than half of them possess SMF of 1.5T. The SMF of the magnet determine the diagnostic power of a scanner, but not worker's exposure profile. This research paper presents an approach for numerical computation of induced electric fields and SAR values by estimation of fringe static magnetic fields. Iso-gauss line of MR was mapped and a polynomial function of the 7th degree was generated and tested. Induced current field due to worker motion in the SMF and SAR values for organs and tissues have been calculated. Results illustrate that the computation tool used permits quick accurate MRI iso-gauss mapping and calculation of SAR values which can then be used for assessment of occupational exposure profile of MRI operators.Keywords: MRI occupational exposure, MRI safety, induced current density, specific absorption rate, static magnetic fields
Procedia PDF Downloads 4307448 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles
Authors: Huseyin Kavas
Abstract:
Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.Keywords: magnetic materials, nanostructures, self-assembly, FMR
Procedia PDF Downloads 1057447 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids
Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim
Abstract:
In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water
Procedia PDF Downloads 2607446 Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices
Authors: Jiwuer Jilili, Iogann Tolbatov, Mousumi U. Kahaly
Abstract:
Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization.Keywords: density functional theory, interfacial magnetism, metal-insulator transition, Ni magnetism.
Procedia PDF Downloads 2297445 2D RF ICP Torch Modelling with Fluid Plasma
Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy
Abstract:
A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation
Procedia PDF Downloads 4327444 Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating
Authors: DuckHwan Bae, YongSung Kwon, Min Young Shon, SanTaek Oh, GuNi Kim
Abstract:
The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size.Keywords: induction heating, thermoplastic polyurethane, nickel, composite, hysteresis loss, eddy current loss, curie temperature
Procedia PDF Downloads 3607443 Core-Shell Type Magnetic Nanoparticles for Targeted Drug Delivery
Authors: Yogita Patil-Sen
Abstract:
Magnetic nanoparticles such as those made of iron oxide have been widely explored as biocatalysts, contrast agents, and drug delivery systems. However, some of the challenges associated with these particles are agglomeration and biocompatibility, which lead to concern of toxicity of the particles, especially for drug delivery applications. Coating the particles with biocompatible materials such as lipids and peptides have shown to improve the mentioned issues. Thus, these core-shell type nanoparticles are emerging as the new class of nanomaterials for targeted drug delivery applications. In this study, various types of core-shell magnetic nanoparticles are prepared and characterized using techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and Thermogravimetric Analysis (TGA). The heating ability of nanoparticles is tested under oscillating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of oscillating field. The results suggest that the core-shell nanoparticles exhibit superparamagnetic behaviour, although, coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the oscillating magnetic field. Thus, the results strongly indicate the suitability of the prepared core-shell type nanoparticles as drug delivery vehicles and their potential in magnetic hyperthermia applications and for hyperthermia cancer therapy.Keywords: core-shell, hyperthermia, magnetic nanoparticles, targeted drug delivery
Procedia PDF Downloads 3347442 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field
Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso
Abstract:
Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate
Procedia PDF Downloads 2587441 QI Wireless Charging a Scope of Magnetic Inductive Coupling
Authors: Sreenesh Shashidharan, Umesh Gaikwad
Abstract:
QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled.Keywords: inductive electric power, electromagnetic induction, magnetic flux, coupling
Procedia PDF Downloads 7317440 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4
Procedia PDF Downloads 3827439 Band Structure Computation of GaMnAs Using the Multiband k.p Theory
Authors: Khadijah B. Alziyadi, Khawlh A. Alzubaidi, Amor M. Alsayari
Abstract:
Recently, GaMnAs diluted magnetic semiconductors(DMSs) have received considerable attention because they combine semiconductor and magnetic properties. GaMnAs has been used as a model DMS and as a test bed for many concepts and functionalities of spintronic devices. In this paper, a theoretical study on the band structure ofGaMnAswill be presented. The model that we used in this study is the 8-band k.p methodwherespin-orbit interaction, spin splitting, and strain are considered. The band structure of GaMnAs will be calculated in different directions in the reciprocal space. The effect of manganese content on the GaMnAs band structure will be discussed. Also, the influence of strain, which varied continuously from tensile to compressive, on the different bands will be studied.Keywords: band structure, diluted magnetic semiconductor, k.p method, strain
Procedia PDF Downloads 1507438 Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide
Authors: S. Bentata, W. Benstaali, A. Abbad, H. A. Bentounes, B. Bouadjemi
Abstract:
The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic.Keywords: spin-up, spin-down, magnetic properties, transition metal, composite materials
Procedia PDF Downloads 2727437 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy
Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais
Abstract:
Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology
Procedia PDF Downloads 2047436 Measurements of Environmental Pollution in Chemical Fertilizer Industrial Area Using Magnetic Susceptibility Method
Authors: Ramadhani Yasyfi Cysela, Adinda Syifa Azhari, Eleonora Agustine
Abstract:
The World Health Organization (WHO) estimates that about a quarter of the diseases facing mankind today occur due to environmental pollution. The soil is a part of environment that have a widespread problem. The contaminated soil should no longer be used to grow food because the chemicals can leech into the food and harm people who eat it. The chemical fertilizer industry gives specific effect due to soil pollution. To determine ammonia and urea emissions from fertilizer industry, we can use physical characteristic of soil, which is magnetic susceptibility. Rock magnetism is used as a proxy indicator to determine changes in physical properties. Magnetic susceptibilities of samples in low and high frequency have been measured by Bartington MS2B magnetic susceptibility measurement device. The sample was taken from different area which located closer by pollution source and far from the pollution source. The susceptibility values of polluted samples in topsoil were quite low, with range from 187.1- 494.8 [x 10-8 m3 kg-1] when free polluted area’s sample has high values (1188.7- 2237.8 [x 10-8 m3 kg-1 ]). From this studies shows that susceptibility values in areas of the fertilizer industry are lower than the free polluted area.Keywords: environmental, magnetic susceptibility, rock magnetism, soil pollution
Procedia PDF Downloads 3557435 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades
Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi
Abstract:
In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.Keywords: hot roller, wear, behavior, microstructure
Procedia PDF Downloads 2407434 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys
Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz
Abstract:
There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling
Procedia PDF Downloads 1797433 Device for Thermo-Magnetic Depolymerisation of Plant Biomass Prior to Methane Fermentation
Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski
Abstract:
This publication presents a device for depolymerisation of plant substrates applicable to agricultural biogas plants and closed-chamber sewage treatment plants where sludge fermentation is bolstered with plant mass. The device consists of a tank with a cover equipped with a heating system, an inlet for the substrate, and an outlet for the depolymerised substrate. Within the tank, a magnet shaft encased in a spiral casing is attached, equipped on its upper end with an internal magnetic disc. A motoreducer is mounted on an external magnetic disc located on the centre of the cover. Depolymerisation of the plant substrate allows for substrate destruction at much lower power levels than by conventional means. The temperature within the reactor can be lowered by 40% in comparison to existing designs. During the depolymerisation process, free radicals are generated within the magnetic field, oxidizing the conditioned substrate and promoting biodegradation. Thus, the fermentation time in the fermenters is reduced by approximately 20%.Keywords: depolymerisation, pre-treatment, biomass, fermentation
Procedia PDF Downloads 5177432 A Study on the Magnetic and Submarine Geology Structure of TA22 Seamount in Lau Basin, Tonga
Authors: Soon Young Choi, Chan Hwan Kim, Chan Hong Park, Hyung Rae Kim, Myoung Hoon Lee, Hyeon-Yeong Park
Abstract:
We performed the marine magnetic, bathymetry and seismic survey at the TA22 seamount (in the Lau basin, SW Pacific) for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry data sets by suing Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.), Multi-beam Echo Sounder EM120 (Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduction to the pole (RTP) and magnetization. Based on the magnetic properties result, we analyzed submarine geology structure of TA22 seamount with post-processed seismic profile. The detailed bathymetry of the TA22 seamount showed the left and right crest parts that have caldera features in each crest central part. The magnetic anomaly distribution of the TA22 seamount regionally displayed high magnetic anomalies in northern part and the low magnetic anomalies in southern part around the caldera features. The RTP magnetic anomaly distribution of the TA22 seamount presented commonly high magnetic anomalies in the each caldera central part. Also, it represented strong anomalies at the inside of caldera rather than outside flank of the caldera. The magnetization distribution of the TA22 seamount showed the low magnetization zone in the center of each caldera, high magnetization zone in the southern and northern east part. From analyzed the seismic profile map, The TA22 seamount area is showed for the inferred small mounds inside each caldera central part and it assumes to make possibility of sills by the magma in cases of the right caldera. Taking into account all results of this study (bathymetry, magnetic anomaly, RTP, magnetization, seismic profile) with rock samples at the left caldera area in 2009 survey, we suppose the possibility of hydrothermal deposits at mounds in each caldera central part and at outside flank of the caldera representing the low magnetization zone. We expect to have the better results by combined modeling from this study data with the other geological data (ex. detailed gravity, 3D seismic, petrologic study results and etc).Keywords: detailed bathymetry, magnetic anomaly, seamounts, seismic profile, SW Pacific
Procedia PDF Downloads 4007431 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal
Authors: Hakimeh Sharififard, Mansooreh Soleimani
Abstract:
In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich
Procedia PDF Downloads 4627430 Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance
Authors: Robert Pintaric, Joze Matela, Stefan Pintaric, Stanka Vadnjal
Abstract:
Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies.Keywords: biocide, electrolyzed oxidizing water (EOW), disinfection, microorganisms, OPTI-JET CS MD1MR
Procedia PDF Downloads 3907429 In Search of CO₂: Gravity and Magnetic Data for Eor Prospect Generation in Central Libya
Authors: Ahmed Saheel, Milad Ahmed Elmaradi, Tim Archer, Muammer Ahmed Aboaesha, Abdulkhaliq Abdulmajid Altoubashi
Abstract:
Enhanced oil recovery using carbon dioxide (CO₂-EOR) is a method that can increase oil production beyond what is typically achievable using conventional recovery methods by injecting and hence storing, carbon dioxide (CO₂) in the oil reservoir. In Libya, plans are underway to source a proportion of this CO₂ from subsurface geology that is known from previous drilling to contain high volumes of CO₂. But first, these subsurface volumes need to be more clearly defined and understood. Focusing on the Al-Harouj region of central Libya, ground gravity and airborne magnetic data from the LPI database and the African Magnetic Mapping Project respectively have been prepared and processed by Libyan Petroleum Institute (LPI) and Reid Geophysics Limited (RGL) to produce a range of grids and related products suitable for interpreting geological structure and to make recommendations for subsequent work that will assist CO₂ exploration for purposes of enhanced oil recovery (EOR).Keywords: gravity anomaly, magnetic anomaly, DEDUCED lineaments, Total horizontal derivative, upward-continuation
Procedia PDF Downloads 1257428 Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field
Authors: Neda Azimi, Masoud Rahimi, Faezeh Mohammadi
Abstract:
Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices.Keywords: CFD modeling, hydrodynamic, micromixer, ferrofluid, mixing
Procedia PDF Downloads 1967427 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2
Authors: Satyabrata Bera, Mintu Mondal
Abstract:
Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature
Procedia PDF Downloads 847426 Synthesis, Characterization, and Properties Study of New Magnetic Materials
Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub
Abstract:
We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt
Procedia PDF Downloads 4467425 Externalizing Behavior Problems Influencing Social Behavior in Early Adolescence
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
This study focuses on early adolescent externalizing behavioral problems which specifically concentrate on rule breaking behavior and aggressive behavior using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the externalizing behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 1975 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a hierarchical modeling method was used to explore the causal relations among background variables, breaking behavior variables and aggressive behavior variables.Keywords: aggressive behavior, breaking behavior, early adolescence, externalizing problem
Procedia PDF Downloads 5077424 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging
Authors: Ashraf Abuelhaija, Klaus Solbach
Abstract:
In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.Keywords: EM coupling, inter-element isolation, magnetic resonance imaging (mri), parallel transmit
Procedia PDF Downloads 493