Search results for: error detection
4948 Co-Integration and Error Correction Mechanism of Supply Response of Sugarcane in Pakistan (1980-2012)
Authors: Himayatullah Khan
Abstract:
This study estimates supply response function of sugarcane in Pakistan from 1980-81 to 2012-13. The study uses co-integration approach and error correction mechanism. Sugarcane production, area and price series were tested for unit root using Augmented Dickey Fuller (ADF). The study found that these series were stationary at their first differenced level. Using the Augmented Engle-Granger test and Cointegrating Regression Durbin-Watson (CRDW) test, the study found that “production and price” and “area and price” were co-integrated suggesting that the two sets of time series had long-run or equilibrium relationship. The results of the error correction models for the two sets of series showed that there was disequilibrium in the short run there may be disequilibrium. The Engle-Granger residual may be thought of as the equilibrium error which can be used to tie the short-run behavior of the dependent variable to its long-run value. The Granger-Causality test results showed that log of price granger caused both the long of production and log of area whereas, the log of production and log of area Granger caused each other.Keywords: co-integration, error correction mechanism, Granger-causality, sugarcane, supply response
Procedia PDF Downloads 4334947 Model Estimation and Error Level for Okike’s Merged Irregular Transposition Cipher
Authors: Okike Benjamin, Garba E. J. D.
Abstract:
The researcher has developed a new encryption technique known as Merged Irregular Transposition Cipher. In this cipher method of encryption, a message to be encrypted is split into parts and each part encrypted separately. Before the encrypted message is transmitted to the recipient(s), the positions of the split in the encrypted messages could be swapped to ensure more security. This work seeks to develop a model by considering the split number, S and the average number of characters per split, L as the message under consideration is split from 2 through 10. Again, after developing the model, the error level in the model would be determined.Keywords: merged irregular transposition, error level, model estimation, message splitting
Procedia PDF Downloads 3104946 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea
Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng
Abstract:
During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea
Procedia PDF Downloads 1694945 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3664944 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 4534943 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4934942 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 2954941 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition
Procedia PDF Downloads 4804940 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform
Authors: Enqing Chen, Jianbo Wang
Abstract:
It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.Keywords: edge detection, NSCT, shift invariant, modulus maxima
Procedia PDF Downloads 4874939 Behavioral and EEG Reactions in Children during Recognition of Emotionally Colored Sentences That Describe the Choice Situation
Authors: Tuiana A. Aiusheeva, Sergey S. Tamozhnikov, Alexander E. Saprygin, Arina A. Antonenko, Valentina V. Stepanova, Natalia N. Tolstykh, Alexander N. Savostyanov
Abstract:
Situation of choice is an important condition for the formation of essential character qualities of a child, such as being initiative, responsible, hard-working. We have studied the behavioral and EEG reactions in Russian schoolchildren during recognition of syntactic errors in emotionally colored sentences that describe the choice situation. Twenty healthy children (mean age 9,0±0,3 years, 12 boys, 8 girls) were examined. Forty sentences were selected for the experiment; the half of them contained a syntactic error. The experiment additionally had the hidden condition: 50% of the sentences described the children's own choice and were emotionally colored (positive or negative). The other 50% of the sentences described the forced-choice situation, also with positive or negative coloring. EEG were recorded during execution of error-recognition task. Reaction time and quality of syntactic error detection were chosen as behavioral measures. Event-related spectral perturbation (ERSP) was applied to characterize the oscillatory brain activity of children. There were two time-frequency intervals in EEG reactions: (1) 500-800 ms in the 3-7 Hz frequency range (theta synchronization) and (2) 500-1000 ms in the 8-12 Hz range (alpha desynchronization). We found out that behavioral and brain reactions in child brain during recognition of positive and negative sentences describing forced-choice situation did not have significant differences. Theta synchronization and alpha desynchronization were stronger during recognition of sentences with children's own choice, especially with negative coloring. Also, the quality and execution time of the task were higher for this types of sentences. The results of our study will be useful for improvement of teaching methods and diagnostics of children affective disorders.Keywords: choice situation, electroencephalogram (EEG), emotionally colored sentences, schoolchildren
Procedia PDF Downloads 2664938 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools
Authors: Tung-Hui Hsu, Wen-Yuh Jywe
Abstract:
Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.Keywords: calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6
Procedia PDF Downloads 3804937 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 2264936 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 4204935 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants
Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee
Abstract:
As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.Keywords: human error, accident prevention, work performance, stress, fatigue
Procedia PDF Downloads 3244934 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe
Authors: E. Marušić-Paloka, I. Pažanin, M. Prša
Abstract:
Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction
Procedia PDF Downloads 2334933 Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode
Authors: Oluwole Opeyemi Dina, Saheed E. Elugoke, Peter Olutope Fayemi, Omolola E. Fayemi
Abstract:
This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode.Keywords: screenprint electrode, iron oxide nanoparticle, epinephrine, serum, cyclic voltametry
Procedia PDF Downloads 1634932 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System
Authors: Omid Kalatpour, Mohammadreza Ajdari
Abstract:
This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.Keywords: human error, petrochemical industry, maintenance, HFACS
Procedia PDF Downloads 2404931 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR
Authors: Ergun Sakalar, Kubra Bilgic
Abstract:
Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr
Procedia PDF Downloads 2424930 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens
Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu
Abstract:
A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.Keywords: ball lens, quadrant detector, axial error, radial error
Procedia PDF Downloads 4714929 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 834928 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates
Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine
Abstract:
The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch
Procedia PDF Downloads 4004927 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 4254926 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 1984925 A Microfluidic Biosensor for Detection of EGFR 19 Deletion Mutation Targeting Non-Small Cell Lung Cancer on Rolling Circle Amplification
Authors: Ji Su Kim, Bo Ram Choi, Ju Yeon Cho, Hyukjin Lee
Abstract:
Epidermal growth factor receptor (EGFR) 19 deletion mutation gene is over-expressed in carcinoma patient. EGFR 19 deletion mutation is known as typical biomarker of non-small cell lung cancer (NSCLC), which one section in the coding exon 19 of EGFR is deleted. Therefore, there have been many attempts over the years to detect EGFR 19 deletion mutation for replacing conventional diagnostic method such as PCR and tissue biopsy. We developed a simple and facile detection platform based on Rolling Circle Amplification (RCA), which provides highly amplified products in isothermal amplification of the ligated DNA template. Limit of detection (~50 nM) and a faster detection time (~30 min) could be achieved by introducing RCA.Keywords: EGFR19, cancer, diagnosis, rolling circle amplification (RCA), hydrogel
Procedia PDF Downloads 2534924 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 2194923 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms
Authors: Tian Xia, Yuan Yan Tang
Abstract:
In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian
Procedia PDF Downloads 4654922 Cognitive Methods for Detecting Deception During the Criminal Investigation Process
Authors: Laid Fekih
Abstract:
Background: It is difficult to detect lying, deception, and misrepresentation just by looking at verbal or non-verbal expression during the criminal investigation process, as there is a common belief that it is possible to tell whether a person is lying or telling the truth just by looking at the way they act or behave. The process of detecting lies and deception during the criminal investigation process needs more studies and research to overcome the difficulties facing the investigators. Method: The present study aimed to identify the effectiveness of cognitive methods and techniques in detecting deception during the criminal investigation. It adopted the quasi-experimental method and covered a sample of (20) defendants distributed randomly into two homogeneous groups, an experimental group of (10) defendants be subject to criminal investigation by applying cognitive techniques to detect deception and a second experimental group of (10) defendants be subject to the direct investigation method. The tool that used is a guided interview based on models of investigative questions according to the cognitive deception detection approach, which consists of three techniques of Vrij: imposing the cognitive burden, encouragement to provide more information, and ask unexpected questions, and the Direct Investigation Method. Results: Results revealed a significant difference between the two groups in term of lie detection accuracy in favour of defendants be subject to criminal investigation by applying cognitive techniques, the cognitive deception detection approach produced superior total accuracy rates both with human observers and through an analysis of objective criteria. The cognitive deception detection approach produced superior accuracy results in truth detection: 71%, deception detection: 70% compared to a direct investigation method truth detection: 52%; deception detection: 49%. Conclusion: The study recommended if practitioners use a cognitive deception detection technique, they will correctly classify more individuals than when they use a direct investigation method.Keywords: the cognitive lie detection approach, deception, criminal investigation, mental health
Procedia PDF Downloads 654921 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8
Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti
Abstract:
In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports
Procedia PDF Downloads 714920 Development of Cost-effective Sensitive Methods for Pathogen Detection in Community Wastewater for Disease Surveillance
Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Jaiyeop Lee
Abstract:
Global pandemic coronavirus disease (COVID-19) caused by Severe acute respiratory syndrome SARS-CoV-2, to control the spread of the COVID-19 pandemic, wastewater surveillance has been used to monitor SARS-CoV2 prevalence in the community. The challenging part is establishing wastewater surveillance; there is a need for a well-equipped laboratory for wastewater sample analysis. According to many previous studies, reverse transcription-polymerase chain reaction (RT-PCR) based molecular tests are the most widely used and popular detection method worldwide. However, the RT-qPCR based approaches for the detection or quantification of SARS-CoV-2 genetic fragments ribonucleic acid (RNA) from wastewater require a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically requires 6 to 8 hours to provide results for just minimum samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at less-specialized regional laboratories. Therefore, scientists and researchers are conducting experiments for rapid detection methods of COVID-19; in some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories, which are presented in the present study. The ongoing research and development of these highly sensitive and rapid technologies, namely RT-LAMP, ELISA, Biosensors, GeneXpert, allows a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses as well. The effort of this study is to discuss the above effective and regional rapid detection and quantification methods in community wastewater as an essential step in advancing scientific goals.Keywords: rapid detection, SARS-CoV-2, sensitive detection, wastewater surveillance
Procedia PDF Downloads 844919 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 377