Search results for: petrochemical industry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5201

Search results for: petrochemical industry

5201 Failure Cases Analysis in Petrochemical Industry

Authors: S. W. Liu, J. H. Lv, W. Z. Wang

Abstract:

In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.

Keywords: cases analysis, corrosion, failure, petrochemical industry

Procedia PDF Downloads 269
5200 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System

Authors: Omid Kalatpour, Mohammadreza Ajdari

Abstract:

This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.

Keywords: human error, petrochemical industry, maintenance, HFACS

Procedia PDF Downloads 203
5199 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait

Authors: Mariam Aljumaa

Abstract:

Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.

Keywords: industrial wastewater, characterization, heavy metals, wastewater quality

Procedia PDF Downloads 56
5198 Effect of Hydraulic Residence Time on Aromatic Petrochemical Wastewater Treatment Using Pilot-Scale Submerged Membrane Bioreactor

Authors: Fatemeh Yousefi, Narges Fallah, Mohsen Kian, Mehrzad Pakzadeh

Abstract:

The petrochemical complex releases wastewater, which is rich in organic pollutants and could not be treated easily. Treatment of the wastewater from a petrochemical industry has been investigated using a submerged membrane bioreactor (MBR). For this purpose, a pilot-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of petrochemical wastewater according to Bandar Imam Petrochemical complex (BIPC) Aromatic plant. The testing system ran continuously (24-h) over 6 months. Trials on different membrane fluxes and hydraulic retention time (HRT) were conducted and the performance evaluation of the system was done. During the 167 days operation of the MBR at hydraulic retention time (HRT) of 18, 12, 6, and 3 and at an infinite sludge retention time (SRT), the MBR effluent quality consistently met the requirement for discharge to the environment. A fluxes of 6.51 and 13.02 L m-2 h-1 (LMH) was sustainable and HRT of 6 and 12 h corresponding to these fluxes were applicable. Membrane permeability could be fully recovered after cleaning. In addition, there was no foaming issue in the process. It was concluded that it was feasible to treat the wastewater using submersed MBR technology.

Keywords: membrane bioreactor (MBR), petrochemical wastewater, COD removal, biological treatment

Procedia PDF Downloads 487
5197 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR

Authors: Md. Nurul Islam Siddique, A. W. Zularisam

Abstract:

The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.

Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane

Procedia PDF Downloads 323
5196 Economic Factors Affecting Greenfield Petroleum Refinery and Petrochemical Projects in Africa

Authors: Daniel Muwooya

Abstract:

This paper analyses economic factors that have affected the competitiveness of petroleum refinery and petrochemical projects in sub-Saharan Africa in the past and continue to plague greenfield projects today. Traditional factors like plant sizing and complexity, low-capacity utilization, changing regulatory environment, and tighter product specifications have been important in the past. Additional factors include the development of excess refinery capacity in Asia and the growth of renewable sources of energy – especially for transportation. These factors create both challenges and opportunities for the development of greenfield refineries and petrochemical projects in areas of increased demand growth and new low-cost crude oil production – like sub-Saharan Africa. This paper evaluates the strategies available to project developers and host countries to address contemporary issues of energy transition and the apparent reduction of funds available for greenfield oil and gas projects. The paper also evaluates the structuring of greenfield refinery and petrochemical projects for limited recourse project finance bankability. The methodology of this paper includes analysis of current industry data, conference proceedings, academic papers, and academic books on the subjects of petroleum refinery economics, refinery financing, refinery operations, and project finance generally and specifically in the oil and gas industry; evaluation of expert opinions from journal articles; working papers from international bodies like the World Bank and the International Energy Agency; and experience from playing an active role in the development and financing of US$ 10 Billion greenfield oil development project in Uganda. The paper also applies the discounted cash flow modelling to illustrate the circumstances of an inland greenfield refinery project in Uganda. Greenfield refinery and petrochemical projects are still necessary in sub-Saharan Africa to, among other aspirations, support the transition from traditional sources of energy like biomass to such modern forms as liquefied petroleum gas. Project developers and host governments will be required to structure projects that support global climate change goals without occasioning undue delays to project execution.

Keywords: financing, refinery and petrochemical economics, Africa, project finance

Procedia PDF Downloads 29
5195 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC

Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi

Abstract:

Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.

Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model

Procedia PDF Downloads 332
5194 Long-Term Exposure, Health Risk, and Loss of Quality-Adjusted Life Expectancy Assessments for Vinyl Chloride Monomer Workers

Authors: Tzu-Ting Hu, Jung-Der Wang, Ming-Yeng Lin, Jin-Luh Chen, Perng-Jy Tsai

Abstract:

The vinyl chloride monomer (VCM) has been classified as group 1 (human) carcinogen by the IARC. Workers exposed to VCM are known associated with the development of the liver cancer and hence might cause economical and health losses. Particularly, for those work for the petrochemical industry have been seriously concerned in the environmental and occupational health field. Considering assessing workers’ health risks and their resultant economical and health losses requires the establishment of long-term VCM exposure data for any similar exposure group (SEG) of interest, the development of suitable technologies has become an urgent and important issue. In the present study, VCM exposures for petrochemical industry workers were determined firstly based on the database of the 'Workplace Environmental Monitoring Information Systems (WEMIS)' provided by Taiwan OSHA. Considering the existence of miss data, the reconstruction of historical exposure techniques were then used for completing the long-term exposure data for SEGs with routine operations. For SEGs with non-routine operations, exposure modeling techniques, together with their time/activity records, were adopted for determining their long-term exposure concentrations. The Bayesian decision analysis (BDA) was adopted for conducting exposure and health risk assessments for any given SEG in the petrochemical industry. The resultant excessive cancer risk was then used to determine the corresponding loss of quality-adjusted life expectancy (QALE). Results show that low average concentrations can be found for SEGs with routine operations (e.g., VCM rectification 0.0973 ppm, polymerization 0.306 ppm, reaction tank 0.33 ppm, VCM recovery 1.4 ppm, control room 0.14 ppm, VCM storage tanks 0.095 ppm and wastewater treatment 0.390 ppm), and the above values were much lower than that of the permissible exposure limit (PEL; 3 ppm) of VCM promulgated in Taiwan. For non-routine workers, though their high exposure concentrations, their low exposure time and frequencies result in low corresponding health risks. Through the consideration of exposure assessment results, health risk assessment results, and QALE results simultaneously, it is concluded that the proposed method was useful for prioritizing SEGs for conducting exposure abatement measurements. Particularly, the obtained QALE results further indicate the importance of reducing workers’ VCM exposures, though their exposures were low as in comparison with the PEL and the acceptable health risk.

Keywords: exposure assessment, health risk assessment, petrochemical industry, quality-adjusted life years, vinyl chloride monomer

Procedia PDF Downloads 163
5193 Digital Transformation of Payment Systems Using Field Service Management

Authors: Hamze Torabian, Mohammad Mehrabioun Mohammadi

Abstract:

Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.

Keywords: digital transformation, field service management, merchant support systems, payment industry

Procedia PDF Downloads 124
5192 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems

Authors: Paul B Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan

Abstract:

As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.

Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology

Procedia PDF Downloads 171
5191 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 222
5190 Online Compressor Washing for Gas Turbine Power Output

Authors: Enyia James Diwa, Isaiah Thank-God Ebi, Dodeye Ina Igbong

Abstract:

The privatization of utilities has brought about very strong competition in industries such as petrochemical and gas distribution among others, considering the continuous increase in cost of fuel. This has brought about the intense reason for gas turbine owners and operators to reduce and control performance degradation of the engine in other to minimize cost. The most common and very crucial problem of the gas turbine is the fouling of compressor, which is mostly caused by a reduction in flow capacity, compressor efficiency, and pressure ratio, this, in turn, lead to the engine compressor re-matching and output power and thermal efficiency reduction. The content of this paper encompasses a detailed presentation of the major causes, effects and control mechanism of fouling. The major emphasis is on compressor water washing to enable power augmentation. A modelled gas turbine similar to that of GE LM6000 is modelled for the current study, based on TURBOMATCH which is a Cranfield University software specifically made for gas turbine performance simulation and fouling detection. The compounded and intricate challenges of compressor online water washing of large output gas turbine are carried out. The treatment is applied to axial compressor used in the petrochemical and hydrocarbon industry.

Keywords: gas turbine, fouling, degradation, compressor washing

Procedia PDF Downloads 318
5189 Study of Chlorine Gas Leak Consequences in Direct Chlorination System Failure in Cooling Towers in the Petrochemical Industry

Authors: Mohammad H. Ruhipour, Mahdi Goharrokhi, Mahsa Ghasemi, Artadokht Ostadsarayi

Abstract:

In this paper, we are aiming to study the consequences of chlorine gas leak in direct chlorine gas injection compared to using bleach (sodium hypochlorite), studying the negative effects both on the environment and individuals. This study was performed in the cooling towers of a natural fractioning unit of Bandar-e-IMAM petrochemical plant. Considering that chlorine gas is highly toxic and based on the health regulation, its release into the surrounding environment can be very dangerous for people and even fatal for individuals. We studied performing quantitative studies in the worst cases of event incidence. In addition, studying alternative methods with a lower risk was also on the agenda to select the least likely possible option causing an accident. In this paper chlorine gas release consequences have been evaluated by using PHAST software. Reaching to 10 ppm of chlorine gas concentration was basis of hazardous area determination. The results show that the full chlorine gas line rupture scenario in Pasquill category F, were worst case, and many people could be harmed around cooling towers area because of chlorine gas inhalation.

Keywords: chlorine gas, consequence modeling, cooling towers, direct chlorination, risk assessment, system failure

Procedia PDF Downloads 244
5188 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries

Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem

Abstract:

This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 414
5187 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis, tensile tests in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery

Procedia PDF Downloads 34
5186 Feasibility Study of Implementing Electronic Commerce in Food Industries with a Case Study

Authors: Maryam Safarirad

Abstract:

Fast and increasing growth of electronic commerce (e-commerce) in developed countries and its resulting competitive advantages mean that those countries should revise dramatically their trade and commercial strategies and policies. Regarding the importance of food industry in Iran, the current paper studies the feasibility of implementing the e-commerce system in Shiraz’s petrochemical unit. The statistical population of the study includes 29 senior managers and experts of the food industries. In the present Feasibility study of implementing electronic commerce 249 research, senior managers and experts’ opinions on feasibility have been examined and some feedbacks have resulted in from the opinions. The current research concludes that the organization under study does not have favorable state either in software or in hardware. Implementation of the e-commerce system in food industries would reduce the average value of the transaction costs.

Keywords: electronic trading, electronic commerce, electronic exchange of information, feasibility study, information technology, virtual shopping, computer networks, electronic commerce laws, food industry

Procedia PDF Downloads 380
5185 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects. 

Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent

Procedia PDF Downloads 202
5184 Polypropylene Fibres Dyeable with Acid Dyes

Authors: H. M. Wang, C. J. Chang

Abstract:

As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.

Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber

Procedia PDF Downloads 58
5183 Business Continuity Risk Review for a Large Petrochemical Complex

Authors: Michel A. Thomet

Abstract:

A discrete-event simulation model was used to perform a Reliability-Availability-Maintainability (RAM) study of a large petrochemical complex which included sixteen process units, and seven feeds and intermediate streams. All the feeds and intermediate streams have associated storage tanks, so that if a processing unit fails and shuts down, the downstream units can keep producing their outputs. This also helps the upstream units which do not have to reduce their outputs, but can store their excess production until the failed unit restart. Each process unit and each pipe section carrying the feeds and intermediate streams has a probability of failure with an associated distribution and a Mean Time Between Failure (MTBF), as well as a distribution of the time to restore and a Mean Time To Restore (MTTR). The utilities supporting the process units can also fail and have their own distributions with specific MTBF and MTTR. The model runs are for ten years or more and the runs are repeated several times to obtain statistically relevant results. One of the main results is the On-Stream factor (OSF) of each process unit (percent of hours in a year when the unit is running in nominal conditions). One of the objectives of the study was to investigate if the storage capacity of each of the feeds and the intermediate stream was adequate. This was done by increasing the storage capacities in several steps and through running the simulation to see if the OSF were improved and by how much. Other objectives were to see if the failure of the utilities were an important factor in the overall OSF, and what could be done to reduce their failure rates through redundant equipment.

Keywords: business continuity, on-stream factor, petrochemical, RAM study, simulation, MTBF

Procedia PDF Downloads 188
5182 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency

Authors: Essam Amerian

Abstract:

The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.

Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency

Procedia PDF Downloads 46
5181 The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)

Authors: Ali Haghiri

Abstract:

This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points.

Keywords: stress corrosion cracking, residual stress, austenitic stainless steel, Br- ion

Procedia PDF Downloads 122
5180 Direct Conversion of Crude Oils into Petrochemicals under High Severity Conditions

Authors: Anaam H. Al-ShaikhAli, Mansour A. Al-Herz

Abstract:

The research leverages the proven HS-FCC technology to directly crack crude oils into petrochemical building blocks. Crude oils were subjected to an optimized hydro-processing process where metal contaminants and sulfur were reduced to an acceptable level for feeding the crudes into the HS-FCC technology. The hydro-processing is achieved through a fixed-bed reactor which is composed of 3 layers of catalysts. The crude oil is passed through a dementalization catalyst followed by a desulfurization catalyst and finally a de-aromatization catalyst. The hydroprocessing was conducted at an optimized liquid hourly space velocity (LHSV), temperature, and pressure for an optimal reduction of metals and sulfur from the crudes. The hydro-processed crudes were then fed into a micro activity testing (MAT) unit to simulate the HS-FCC technology. The catalytic cracking of crude oils was conducted over tailored catalyst formulations under an optimized catalyst/oil ratio and cracking temperature for optimal production of total light olefins.

Keywords: petrochemical, catalytic cracking, catalyst synthesis, HS-FCC technology

Procedia PDF Downloads 50
5179 Transformative Measures in Chemical and Petrochemical Industry Through Agile Principles and Industry 4.0 Technologies

Authors: Bahman Ghorashi

Abstract:

The immense awareness of the global climate change has compelled traditional fossil fuel companies to develop strategies to reduce their carbon footprint and simultaneously consider the production of various sources of clean energy in order to mitigate the environmental impact of their operations. Similarly, supply chain issues, the scarcity of certain raw materials, energy costs as well as market needs, and changing consumer expectations have forced the traditional chemical industry to reexamine their time-honored modes of operation. This study examines how such transformative change might occur through the applications of agile principles as well as industry 4.0 technologies. Clearly, such a transformation is complex, costly, and requires a total commitment on the part of the top leadership and the entire management structure. Factors that need to be considered include organizational speed of change, a restructuring that would lend itself toward collaboration and the selling of solutions to customers’ problems, rather than just products, integrating ‘along’ as well as ‘across’ value chains, mastering change and uncertainty as well as a recognition of the importance of concept-to-cash time, i.e., the velocity of introducing new products to market, and the leveraging of people and information. At the same time, parallel to implementing such major shifts in the ethos, and the fabric of the organization, the change leaders should remain mindful of the companies’ DNA while incorporating the necessary DNA defying shifts. Furthermore, such strategic maneuvers should inevitably incorporate the managing of the upstream and downstream operations, harnessing future opportunities, preparing and training the workforce, implementing faster decision making and quick adaptation to change, managing accelerated response times, as well as forming autonomous and cross-functional teams. Moreover, the leaders should establish the balance between high-value solutions versus high-margin products, fully implement digitization of operations and, when appropriate, incorporate the latest relevant technologies, such as: AI, IIoT, ML, and immersive technologies. This study presents a summary of the agile principles and the relevant technologies and draws lessons from some of the best practices that are already implemented within the chemical industry in order to establish a roadmap to agility. Finally, the critical role of educational institutions in preparing the future workforce for Industry 4.0 is addressed.

Keywords: agile principles, immersive technologies, industry 4.0, workforce preparation

Procedia PDF Downloads 63
5178 An Empirical Study Comparing Industry Segments as Regards Organisation Management in Open Innovation - Based on a Questionnaire of the Pharmaceutical Industry and IT Component Industry Segment

Authors: Fumihiko Isada, Yuriko Isada

Abstract:

The aim of this research is to clarify the difference by industry segment or product characteristics as regards organisation management for an open innovation to raise R&D performance. In particular, the trait of the pharmaceutical industry is defined in comparison with IT component industry segment. In considering open innovation, both inter-organisational relation and the management in an organisation are important issues. As methodology, a questionnaire was conducted. In conclusion, suitable organisation management according to the difference in industry segment or product characteristics became clear.

Keywords: empirical study, industry segment, open innovation, product-development organisation pattern

Procedia PDF Downloads 387
5177 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 273
5176 The Roles of Education, Policies and Technologies in the Globalization Processes of Creative Industry

Authors: Eureeka Haishang Wu

Abstract:

Creative Industry has been recognized as top priority in many nations for decades, as through globalization processes, culture can be economized by creative industry to develop economies. From non-economic perspectives; creative industry supports nation-identity, enhances global exposure, and improve international relation. In order to enable the globalization processes of creative industry, a three-step approach was proposed to align education, policies, and technologies into a transformation platform, and eventually to achieve a common model of global collaboration.

Keywords: creative industry, education, policies, technologies, collaboration, globalization

Procedia PDF Downloads 304
5175 Investigating the Effect of Mobile Technologies Dimensions upon Creativity of Kermanshah Polymer Petrochemical Company’s Employees

Authors: Ghafor Ahmadi, Nader Bohloli Zynab

Abstract:

Rapid scientific changes are the driving force of upheaval. As new technologies arrive, human’s life changes and information becomes one of the productive sources besides other factors. Optimum application of each technology depends on precise recognition of that technology. Options of mobile phones are constantly developing and evolving. Meanwhile, one of the influential variables for improving the performance and eternity of organizations is creativity. One of the new technologies tied with development and innovation is mobile phone. In this research, the contribution of different dimensions of mobile technologies such as perceived use, perceived enjoyment, continuance intention, confirmation and satisfaction to creativity of employees were investigated. Statistical population included 510 employees of Kermanshah Petrochemical Company. Sample size was defined 217 based on Morgan and Krejcie table. This study is descriptive and data gathering instrument was a questionnaire. Applying SPSS software, linear regression was analyzed. It was found out that all dimensions of mobile technologies except satisfaction affect on creativity of employees.

Keywords: mobile technologies, continuance intention, perceived enjoyment, perceived use, confirmation, satisfaction, creativity

Procedia PDF Downloads 232
5174 Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes

Authors: Mithil Pandey, Ragunathan Bala Subramanian

Abstract:

One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst.

Keywords: catalysts, fluid catalytic cracking, industrial processes, zeolite

Procedia PDF Downloads 307
5173 The Relationship between Value-Added and Energy Consumption in Iran’s Industry Sector

Authors: Morteza Raei Dehaghi, Mojtaba Molaahmadi, Seyed Mohammad Mirhashemi

Abstract:

This study aimed to explore the relationship between energy consumption and value-added in Iran’s industry sector during the time period 1973-2011. Annual data related to energy consumption and value added in the industry sector were used. The results of the study revealed a positive relationship between energy consumption and value-added of the industry sector. Similarly, the results showed that there is one-way causality between energy consumption and value-added in the industry sector.

Keywords: economic growth, energy consumption, granger causality test, industry sector

Procedia PDF Downloads 443
5172 Compare Hot Forming and Cold Forming in Rolling Process

Authors: Ali Moarrefzadeh

Abstract:

In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current.

Keywords: hot forming, cold forming, metal, rolling, simulation

Procedia PDF Downloads 494