Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 290

Search results for: Laplacian of Gaussian

290 Extremal Laplacian Energy of Threshold Graphs

Authors: Seyed Ahmad Mojallal


Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies.

Keywords: Laplacian eigenvalues, Laplacian energy, threshold graphs, extremal graphs

Procedia PDF Downloads 306
289 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey


The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 471
288 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden


A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 158
287 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang


In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 363
286 Normalized Laplacian Eigenvalues of Graphs

Authors: Shaowei Sun


Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph.

Keywords: graph, normalized Laplacian eigenvalues, normalized Laplacian matrix, tree

Procedia PDF Downloads 252
285 The Second Smallest Eigenvalue of Complete Tripartite Hypergraph

Authors: Alfi Y. Zakiyyah, Hanni Garminia, M. Salman, A. N. Irawati


In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph.

Keywords: connectivity, graph, hypergraph, Laplacian matrix

Procedia PDF Downloads 386
284 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique

Authors: Abhilash Sahu, Amit Priyadarshi


In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.

Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution

Procedia PDF Downloads 167
283 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues

Authors: Ayşe Dilek Maden


For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.

Keywords: degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree, simple connected graph

Procedia PDF Downloads 303
282 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra


It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.

Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds

Procedia PDF Downloads 147
281 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz


More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 445
280 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz


A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: beam propagation, cos-Gaussian beam, numerical simulation, photorefractive crystal

Procedia PDF Downloads 397
279 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian

Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma


In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.

Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental

Procedia PDF Downloads 112
278 Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon


In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.

Keywords: frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol

Procedia PDF Downloads 274
277 Gaussian Operations with a Single Trapped Ion

Authors: Bruna G. M. Araújo, Pedro M. M. Q. Cruz


In this letter, we review the literature of the major concepts that govern Gaussian quantum information. As we work with quantum information and computation with continuous variables, Gaussian states are needed to better describe these systems. Analyzing a single ion locked in a Paul trap we use the interaction picture to obtain a toolbox of Gaussian operations with the ion-laser interaction Hamiltionian. This is achieved exciting the ion through the combination of two lasers of distinct frequencies corresponding to different sidebands of the external degrees of freedom. First we study the case of a trap with 1 mode and then the case with 2 modes. In this way, we achieve different continuous variables gates just by changing the external degrees of freedom of the trap and combining the Hamiltonians of blue and red sidebands.

Keywords: Paul trap, ion-laser interaction, Gaussian operations

Procedia PDF Downloads 552
276 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta


In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law

Procedia PDF Downloads 246
275 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel


Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 362
274 System of Linear Equations, Gaussian Elimination

Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali


In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.

Keywords: direct, indirect, backward stage, forward stage

Procedia PDF Downloads 437
273 Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma

Authors: Sandeep Kumar, Naveen Gupta


The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing.

Keywords: non-Gaussian beam, collisional plasma, variational theory, self-focusing

Procedia PDF Downloads 89
272 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter

Authors: Lina Pan


In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.

Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood

Procedia PDF Downloads 385
271 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo


Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 77
270 The Extended Skew Gaussian Process for Regression

Authors: M. T. Alodat


In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.

Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model

Procedia PDF Downloads 432
269 Interaction of Tungsten Tips with Laguerre-Gaussian Beams

Authors: Abhisek Sinha, Debobrata Rajak, Shilpa Rani, Ram Gopal, Vandana Sharma


The interaction of femtosecond laser pulses with metallic tips has been studied extensively, and they have proved to be a very good source of ultrashort electron pulses. A study of the interaction of femtosecond Laguerre-Gaussian (LG) laser modes with Tungsten tips is presented here. Laser pulses of 35 fs pulse durations were incident on Tungsten tips, and their electron emission rates were studied for LG (l=1, p=0) and Gaussian modes. A change in the order of the interaction for LG beams is reported, and the difference in the order of interaction is attributed to ponderomotive shifts in the energy levels corresponding to the enhanced near-field intensity supported by numerical simulations.

Keywords: femtosecond, Laguerre-Gaussian, OAM, tip

Procedia PDF Downloads 99
268 ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon


This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments.

Keywords: frequency offset, cyclic prefix, maximum-likelihood, non-Gaussian noise, OFDM

Procedia PDF Downloads 395
267 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan


Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 293
266 Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes

Authors: Septimia Sarbu


The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes.

Keywords: generalized entropies, Sharma-Mittal entropy rate, Gaussian processes, eigenvalues of the covariance matrix, squeeze theorem

Procedia PDF Downloads 373
265 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi


This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 297
264 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh


This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 69
263 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma


Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 497
262 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui


The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: wind power, Gaussien process, modelling, forecasting

Procedia PDF Downloads 305
261 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew


This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 236