Search results for: protein energy malnutrition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10501

Search results for: protein energy malnutrition

7861 Improving the Feeding Value of Straws with Pleurotus Ostreatus

Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone

Abstract:

The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.

Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi

Procedia PDF Downloads 58
7860 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer

Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam

Abstract:

Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.

Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations

Procedia PDF Downloads 128
7859 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 294
7858 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks

Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul

Abstract:

Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.

Keywords: control and protection systems, distributed generation, renewable energy, very small power producers

Procedia PDF Downloads 475
7857 The Optimisation of Salt Impregnated Matrices as Potential Thermochemical Storage Materials

Authors: Robert J. Sutton, Jon Elvins, Sean Casey, Eifion Jewell, Justin R. Searle

Abstract:

Thermochemical storage utilises chemical salts which store and release energy a fully reversible endo/exothermic chemical reaction. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 (SIMs – Salt In Matrices) are proposed as potential materials for long-term thermochemical storage. The behavior of these materials during typical hydration and dehydration cycles is investigated. A simple moisture experiment represents the hydration, whilst thermogravimetric analysis (TGA) represents the dehydration. Further experiments to approximate the energy density and to determine the peak output temperatures of the SIMs are conducted. The CaCl2 SIM is deemed the best performing SIM across most experiments, whilst the results of MgSO4 SIM indicate difficulty associated with energy recovery.

Keywords: hydrated states, inter-seasonal heat storage, moisture sorption, salt in matrix

Procedia PDF Downloads 552
7856 A Review on Potential Utilization of Water Hyacinth (Eichhornia crassipes) as Livestock Feed with Particular Emphasis to Developing Countries in Africa

Authors: Shigdaf Mekuriaw, Firew Tegegne, A. Tsunekawa, Dereje Tewabe

Abstract:

The purpose of this paper is to make a comprehensive review on the use of water hyacinth (Eichhornia crassipes) as a potential livestock feed and argue its utilization as complementary strategy to other control methods. Water Hyacinth is one of the most noxious plant invaders of rivers and lakes. Such weeds cause environmental disaster and interfere with economic and recreational activities such as water transportation and fishing. Economic impacts of the weed in seven African countries have been estimated at between 20-50 million US$ every year. It would, therefore, be prudent to suggest utilization as a complementary control method. The majority of people in developing countries are dependent on traditional and inefficient crop-livestock production system that constrains their ability to enhance economic productivity and quality of life. Livestock in developing countries faces shortage of feed, especially during the long dry seasons. Existing literature shows the use of water hyacinth as livestock and fish feed. The chemical composition of water hyacinth varies considerably. Due to its relatively high crude protein (CP) content (5.8-20.0%), water hyacinth can be considered as a potential protein supplement for livestock which commonly feed cereal crop residues whose contribution as source of feed is increasing in Africa. Though the effects of anti-nutritional factors (ANFs) present in water hyacinth is not investigated, their concentrations are not above threshold hinder its utilization as livestock feed. In conclusion, water hyacinth could provide large quantities of nutritious feed for animals. Like other feeds, water hyacinth may not be offered as a sole feed and based on existing literature its optimum inclusion level reaches 50%.

Keywords: Africa, livestock feed, water bodies, water hyacinth and weed control method

Procedia PDF Downloads 378
7855 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 506
7854 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 111
7853 Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques

Authors: Hanan Alenezi

Abstract:

Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation.

Keywords: Energy Dispersive X-Ray Spectroscopy (EDS), Membrane, Polyetherimide PEI, Scanning electron microscope (SEM), Solvent, X-Ray Diffraction (XRD)

Procedia PDF Downloads 176
7852 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility

Authors: B. Casper

Abstract:

The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.

Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning

Procedia PDF Downloads 122
7851 Molecular Docking Analysis of Flavonoids Reveal Potential of Eriodictyol for Breast Cancer Treatment

Authors: Nicole C. Valdez, Vincent L. Borromeo, Conrad C. Chong, Ahmad F. Mazahery

Abstract:

Breast cancer is the most prevalent cancer worldwide, where the majority of cases are estrogen-receptor positive and involve 2 receptor proteins. The binding of estrogen to estrogen receptor alpha (ERα) promotes breast cancer growth, while it's binding to estrogen-receptor beta (ERβ) inhibits tumor growth. While natural products have been a promising source of chemotherapeutic agents, the challenge remains in finding a bioactive compound that specifically targets cancer cells, minimizing side effects on normal cells. Flavonoids are natural products that act as phytoestrogens and induce the same response as estrogen. They are able to compete with estrogen for binding to ERα; however, it has a higher binding affinity for ERβ. Their abundance in nature and low toxicity make them a potential candidate for breast cancer treatment. This study aimed to determine which particular flavonoids can specifically recognize ERβ and potentially be used for breast cancer treatment through molecular docking. A total of 206 flavonoids comprised of 97 isoflavones and 109 flavanones were collected from ZINC15, while the 3D structures of ERβ and ERα were obtained from Protein Data Bank. These flavonoid subclasses were chosen as they bind more strongly to ERs due to their chemical structure. The structures of the flavonoid ligands were converted using Open Babel, while the estrogen receptor protein structures were prepared using Autodock MGL Tools. The optimal binding site was found using BIOVIA Discovery Studio Visualizer before docking all flavonoids on both ERβ and ERα through Autodock Vina. Genistein is a flavonoid that exhibits anticancer effects by binding to ERβ, so its binding affinity was used as a baseline. Eriodictyol and 4”,6”-Di-O-Galloylprunin both exceeded genistein’s binding affinity for ERβ and was lower than its binding affinity for ERα. Of the two, eriodictyol was pursued due to its antitumor properties on a lung cancer cell line and on glioma cells. It is able to arrest the cell cycle at the G2/M phase by inhibiting the mTOR/PI3k/Akt cascade and is able to induce apoptosis via the PI3K/Akt/NF-kB pathway. Protein pathway and gene analysis were also conducted using ChEMBL and PANTHER and it was shown that eriodictyol might induce anticancer effects through the ROS1, CA7, KMO, and KDM1A genes which are involved in cell proliferation in breast cancer, non-small cell lung cancer, and other diseases. The high binding affinity of eriodictyol to ERβ, as well as its potential affected genes and antitumor effects, therefore, make it a candidate for the development of new breast cancer treatment. Verification through in vitro experiments such as checking the upregulation and downregulation of genes through qPCR and checking cell cycle arrest using a flow cytometry assay is recommended.

Keywords: breast cancer, estrogen receptor, flavonoid, molecular docking

Procedia PDF Downloads 79
7850 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks

Authors: Jai Prakash Prasad, Suresh Chandra Mohan

Abstract:

Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.

Keywords: energy efficient, network lifetime, sensor networks, wireless communication

Procedia PDF Downloads 464
7849 Study of Harmonics Estimation on Analog kWh Meter Using Fast Fourier Transform Method

Authors: Amien Rahardjo, Faiz Husnayain, Iwa Garniwa

Abstract:

PLN used the kWh meter to determine the amount of energy consumed by the household customers. High precision of kWh meter is needed in order to give accuracy results as the accuracy can be decreased due to the presence of harmonic. In this study, an estimation of active power consumed was developed. Based on the first year study results, the largest deviation due to harmonics can reach up to 9.8% in 2200VA and 12.29% in 3500VA with kWh meter analog. In the second year of study, deviation of digital customer meter reaches 2.01% and analog meter up to 9.45% for 3500VA household customers. The aim of this research is to produce an estimation system to calculate the total energy consumed by household customer using analog meter so the losses due to irregularities PLN recording of energy consumption based on the measurement used Analog kWh-meter installed is avoided.

Keywords: harmonics estimation, harmonic distortion, kWh meters analog and digital, THD, household customers

Procedia PDF Downloads 477
7848 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 285
7847 CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure

Authors: A. O. Idris, J. Virgone, A. I. Ibrahim, D. David, E. Vergnault

Abstract:

In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented.

Keywords: building, double skin roof, CFD, thermo-fluid analysis, energy saving, forced convection, natural convection

Procedia PDF Downloads 257
7846 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells

Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li

Abstract:

BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.

Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)

Procedia PDF Downloads 271
7845 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 464
7844 Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics

Authors: Mardiati Zain, W. S. N. Rusmana, Erpomen, Malik Makmur, Ezi Masdia Putri

Abstract:

Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production.

Keywords: digestibility, Leucaena leucocephala, complete feed, rice straw ammoniated

Procedia PDF Downloads 149
7843 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 325
7842 Healthy, Breast Fed Bangladeshi Children Can Regulate Their Food Consumption in Each Meal and Feeding Duration When Offered with Varied Energy Density and Feeding Frequency of Complementary Foods

Authors: M. Munirul Islam, Makhduma Khatun M., Janet M. Peerson, Tahmeed Ahmed, M. Abid Hossain Mollah, Kathryn G. Dewey, Kenneth H. Brown

Abstract:

Information is required on the effects of dietary energy density (ED) and feeding frequency (FF) of complementary foods (CF) on food consumption during individual meals and time expended in child feeding. We evaluated the effects of varied ED and FF of CFs on food intake and time required for child feeding during individual meals. During 9 separate, randomly ordered dietary periods lasting 3-6 days each, we measured self-determined intakes of porridges by 18 healthy, breastfed children 8-11 mo old who were fed coded porridges with energy densities of 0.5, 1.0 or 1.5 kcal/g, during 3, 4, or 5 meals/d. CF intake was measured by weighing the feeding bowl before and after every meal. Children consumed greater amounts of CFs per meal when they received diets with lower ED (p = 0.044) and fewer meals per day (p < 0.001). Food intake was less during the first meal of the day than the other meals. Greater time was expended per meal when fewer meals were offered. Time expended per meal did not vary by ED, but the children ate the lower ED diets faster (p = 0.019). Food intake velocity was also greater when more meals were offered per day (p = 0.005). These results provide further evidence of young children’s ability to regulate their energy intakes, even during infancy; and they convey information on factors that affect the amount of time that caregivers must devote to child feeding.

Keywords: complementary foods, energy density, feeding frequency, young children

Procedia PDF Downloads 461
7841 Evaluation of Food Services by the Personnel in Hospitals of Athens, Greece

Authors: I. Mentziou, C. Delezos, D. Krikidis, A. Nestoridou, G. Boskou

Abstract:

Introduction: The systems of production and distribution of meals can have a significant impact on the food intake of hospital patients who are likely to develop malnutrition. In hospitals, the consequences of food borne infections can range from annoying to life-threatening for a patient, since they can lead up to death in vulnerable groups Aim: The aim of the present study was the evaluation of food safety management systems implementation, as well as the general evaluation of the total quality management systems in Greek hospitals. Methods: This is a multifocal study on the implementation and evaluation of the food safety management systems in the Greek hospitals of Attica region. Eleven hospitals from the city of Athens were chosen for this purpose. The sample was derived from the high rank personnel of the nutritional department (dietician, head-chef, food technologist, public health inspector). Tailor made questionnaires on hygiene regulations were used as tools for the interviews. Results: Overall, 30 employees in the field of hospital nutrition participated. Most of the replies implied that almost always the hygiene regulations are implemented. Nevertheless, only 30% stated that there is a Hazard Analysis Critical Control Points HACCP system (HACCP) in the hospital. In a small number of questionnaires there were proposals for changes by the staff. Conclusion: Measurement of the opinion of the personnel about the provided food services within a hospital can further lead to continuous improvement of the hospital nutrition.

Keywords: evaluation, food service, HACCP, hospital, personnel

Procedia PDF Downloads 370
7840 Influence of Biochar Application on Growth, Dry Matter Yield and Nutrition of Corn (Zea mays L.) Grown on Sandy Loam Soils of Gujarat, India

Authors: Pravinchandra Patel

Abstract:

Sustainable agriculture in sandy loam soil generally faces large constraints due to low water holding and nutrient retention capacity, and accelerated mineralization of soil organic matter. There is need to increase soil organic carbon in the soil for higher crop productivity and soil sustainability. Recently biochar is considered as sixth element and work as a catalyst for increasing crop yield, soil fertility, soil sustainability and mitigation of climate change. Biochar was generated at the Sansoli Farm of Anand Agricultural University, Gujarat, India by pyrolysis at temperatures (250-400°C) in absence of oxygen using slow chemical process (using two kilns) from corn stover (Zea mays, L), cluster bean stover (Cyamopsis tetragonoloba) and Prosopis julifera wood. There were 16 treatments; 4 organic sources (3 biochar; corn stover biochar (MS), cluster bean stover (CB) & Prosopis julifera wood (PJ) and one farmyard manure-FYM) with two rate of application (5 & 10 metric tons/ha), so there were eight treatments of organic sources. Eight organic sources was applied with the recommended dose of fertilizers (RDF) (80-40-0 kg/ha N-P-K) while remaining eight organic sources were kept without RDF. Application of corn stover biochar @ 10 metric tons/ha along with RDF (RDF+MS) increased dry matter (DM) yield, crude protein (CP) yield, chlorophyll content and plant height (at 30 and 60 days after sowing) than CB and PJ biochar and FYM. Nutrient uptake of P, K, Ca, Mg, S and Cu were significantly increased with the application of RDF + corn stover @ 10 metric tons/ha while uptake of N and Mn were significantly increased in RDF + corn stover @ 5 metric tons/ha. It was found that soil application of corn stover biochar @ 10 metric tons/ha along with the recommended dose of chemical fertilizers (RDF+MS ) exhibited the highest impact in obtaining significantly higher dry matter and crude protein yields and larger removal of nutrients from the soil and it also beneficial for built up nutrients in soil. It also showed significantly higher organic carbon content and cation exchange capacity in sandy loam soil. The lower dose of corn stover biochar @ 5 metric tons/ha (RDF+ MS) was also remained the second highest for increasing dry matter and crude protein yields of forage corn crop which ultimately resulted in larger removals of nutrients from the soil. This study highlights the importance of mixing of biochar along with recommended dose of fertilizers on its synergistic effect on sandy loam soil nutrient retention, organic carbon content and water holding capacity hence, the amendment value of biochar in sandy loam soil.

Keywords: biochar, corn yield, plant nutrient, fertility status

Procedia PDF Downloads 144
7839 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 547
7838 Drop-Out Rate in Leocadio Alejo Entienza High School for SY 2013-2014: Its Causes and Interventions

Authors: Raquel Balon Quintana

Abstract:

This study aims to help the Students-At-Risk of Dropping Out to finish their studies in their grade/year level category for this school year by finding out students’ behavior in and out the school, community involvement in the learning process and the causes or reasons behind drop-out rate that affect the performance level of the school. This study also looked for the intervention measures to reduce the drop-out rate of the school. The Normative Survey Method of research was used to achieve its purpose and objective of conducting interview with students and their parents, subject teachers, classmates and friends; undertaking observation and monitoring to find out the whereabouts of SARDO’s on and off classes hours; using questionnaires; and conducting home visitation to be able to link the community involvement into dropping-out of student. Results of the study revealed that out of 32 Students-At-Risk of Dropping Out, 50% were over age for high school (16 years old to 21 years old) while the other 50% came from the regular high school students. These 16 students came from the 41 students who dropped-out from their classes last school year. All Students-At-Risk of Dropping-Out are single and seventy-eight percent of them are male. Top five (5) among the factors that affect their school performance were peer pressure, self-drive, malnutrition, family problem/support and truancy. The five (5) least factors that affect their schooling were problems within their community, school-administration factor, harassment, teacher factor and distance from the school.

Keywords: students-at-risk of dropping-out, drop-out rate, Leocadio Alejo Entienza High School, Philippines

Procedia PDF Downloads 551
7837 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 264
7836 A Strategic Approach for Promoting Renewable Energy Technologies in Developing Countries

Authors: Hanee Ryu

Abstract:

The supporting policies for renewable energy have been designed to deploy renewable energy technology targeting domestic market. The government encourages market creation through obligations such as FIT or RPS on an energy supplier. With these policy measures, the securing vast market needs to induce technology development. Furthermore, it is crucial that ensuring developing market can make the environment nurture the renewable energy industry. Overseas expansion to countries being in demand is essential under immature domestic market. Extending its business abroad can make the domestic company get the knowledge through learning-by-doing. Besides, operation in the countries to be rich in renewable resources such as weather conditions helps to develop proven track record required for verifying technologies. This paper figures out the factor to hamper the global market entry and build up the strategies to overcome difficulties. Survey conducted renewable energy company having overseas experiences at least once. Based on the survey we check the obstacle against exporting home goods and services. As a result, securing funds is salient fact to proceed to business. It is difficult that only private bank or investment agencies participate in the project under uncertainty which renewable energy development project bears inherently. These uncertainties need public fund such as ODA to encourage private sectors to start a business. Furthermore, international organizations such as IRENA or multilateral development banks as WBG play a role to guarantee the investment including risk insurance against uncertainty. It can also manage excavation business cooperating with developing countries and supplement inadequate government funding involved. With survey results strategies to obtain the order, the international organization places are categorized according to the type of getting a contract. This paper suggests 3 types approaching to the international organization project (going through international competitive bidding, using ODA and project financing) and specifies the role of government to support the domestic firms with running out of funds. Under renewable energy industry environment where hard to being created as a spontaneous market, government policy approach needs to motivate the actors to get into the business. It is one of the good strategies that countries with the low demand of renewable energies participate in the project international agencies order in the developing countries having abundant resources. This provides crucial guidance for the formulation of renewable energy development policy and planning with consideration of business opportunities and funding.

Keywords: exporting strategies, multilateral development banks, promoting in developing countries, renewable energy technologies

Procedia PDF Downloads 516
7835 Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods

Authors: Jeffrey Cacho, Sherwin Reyes

Abstract:

The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety.

Keywords: biomass roasting furnace, heat storage, combustion chute, start-up roasting business

Procedia PDF Downloads 47
7834 Simulation Approach for Analyzing Transportation Energy System in South Korea

Authors: Sungjun Hong, Youah Lee, Jongwook Kim

Abstract:

In the last COP21 held in Paris on 2015, Korean government announced that Intended Nationally Determined Contributions (INDC) was 37% based on BAU by 2030. The GHG reduction rate of the transportation sector is the strongest among all sectors by 2020. In order to cope with Korean INDC, Korean government established that 3rd eco-friendly car deployment national plans at the end of 2015. In this study, we make the energy system model for estimating GHG emissions using LEAP model.

Keywords: INDC, greenhouse gas, LEAP, transportation

Procedia PDF Downloads 202
7833 Impact of Wind Energy on Cost and Balancing Reserves

Authors: Anil Khanal, Ali Osareh, Gary Lebby

Abstract:

Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper, the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here, we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study shows how the increases in wind generation will affect power system economics.

Keywords: wind power generation, wind power penetration, cost analysis, economic dispatch (ED) model

Procedia PDF Downloads 563
7832 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 470