Search results for: non-asbestos organic (NAO) friction materials
6803 An Interactive Online Academic Writing Resource for Research Students in Engineering
Authors: Eleanor K. P. Kwan
Abstract:
English academic writing, it has been argued, is an acquired language even for English speakers. For research students whose English is not their first language, however, the acquisition process is often more challenging. Instead of hoping that students would acquire the conventions themselves through extensive reading, there is a need for the explicit teaching of linguistic conventions in academic writing, as explicit teaching could help students to be more aware of the different generic conventions in different disciplines in science. This paper presents an interuniversity effort to develop an online academic writing resource for research students in five subdisciplines in engineering, upon the completion of the needs analysis which indicates that students and faculty members are more concerned about students’ ability to organize an extended text than about grammatical accuracy per se. In particular, this paper focuses on the materials developed for thesis writing (also called dissertation writing in some tertiary institutions), as theses form an essential graduation requirement for all research students and this genre is also expected to demonstrate the writer’s competence in research and contributions to the research community. Drawing on Swalesian move analysis of research articles, this online resource includes authentic materials written by students and faculty members from the participating institutes. Highlight will be given to several aspects and challenges of developing this online resource. First, as the online resource aims at moving beyond providing instructions on academic writing, a range of interactive activities need to be designed to engage the users, which is one feature which differentiates this online resource from other equally informative websites on academic writing. Second, it will also include discussion on divergent textual practices in different subdisciplines, which help to illustrate different practices among these subdisciplines. Third, since theses, probably one of the most extended texts a research student will complete, require effective use of signposting devices to facility readers’ understanding, this online resource will also provide both explanation and activities on different components that contribute to text coherence. Finally results from piloting will also be included to shed light on the effectiveness of the materials, which could be useful for future development.Keywords: academic writing, English for academic purposes, online language learning materials, scientific writing
Procedia PDF Downloads 2696802 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis
Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping
Abstract:
The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.Keywords: free energy, magnetic anisotropy, magnetostriction, morphotropic phase boundary (MPB)
Procedia PDF Downloads 2756801 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers
Authors: Hasan Taherkhani
Abstract:
Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep
Procedia PDF Downloads 2776800 Catalytic Depolymerisation of Waste Plastic Material into Hydrocarbon Liquid
Authors: Y. C. Bhattacharyulu, Amit J. Agrawal, Vikram S. Chatake, Ketan S. Desai
Abstract:
In recent years, the improper disposal of waste polymeric materials like plastics, rubber, liquid containers, daily household materials, etc. is posing a grave problem by polluting the environment. On the other hand fluctuations in the oil market and limited stocks of fossil fuels have diverted the interest of researchers to study the production of fuels and hydrocarbons from alternative sources. Hence, to study the production of fuels from waste plastic is the need of hour at present. Effect of alkali solutions of different concentrations with copper comprising catalyst on depolymerisation reactions was studied here. The present study may become a preliminary method for obtaining valuable hydrocarbons from waste plastics and an effective way for depolymerising or degrading waste plastics for their safe disposal without causing any environmental problems.Keywords: catalyst, depolymerisation, disposal, hydrocarbon liquids, waste plastic
Procedia PDF Downloads 2696799 Analysis of Delamination in Drilling of Composite Materials
Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi
Abstract:
In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.Keywords: composite material, delamination, drilling, thrust force
Procedia PDF Downloads 5156798 Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall
Authors: Farshid Fathinia
Abstract:
Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases.Keywords: transient natural convection, trapezoidal cavity, three-dimensional flow, entropy generation, second law
Procedia PDF Downloads 3506797 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids
Authors: Devesh Motwani, Amey Kashyap
Abstract:
Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.Keywords: economics, guargum, viscofier, CMC, thermal stability
Procedia PDF Downloads 4706796 The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey
Authors: M. Kubilay Önal
Abstract:
The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones.Keywords: apricot, phenological characters, pomological characters, weight-ranking method
Procedia PDF Downloads 2816795 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection
Authors: Martin Pumera
Abstract:
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.Keywords: graphene, 2D nanomaterials, biosensing, chip design
Procedia PDF Downloads 5506794 Comparison of Tensile Strength and Folding Endurance of (FDM Process) 3D Printed ABS and PLA Materials
Authors: R. Devicharan
Abstract:
In a short span 3D Printing is expected to play a vital role in our life. The possibility of creativity and speed in manufacturing through various 3D printing processes is infinite. This study is performed on the FDM (Fused Deposition Modelling) method of 3D printing, which is one of the pre-dominant methods of 3D printing technologies. This study focuses on physical properties of the objects produced by 3D printing which determine the applications of the 3D printed objects. This paper specifically aims at the study of the tensile strength and the folding endurance of the 3D printed objects through the FDM (Fused Deposition Modelling) method using the ABS (Acronitirile Butadiene Styrene) and PLA (Poly Lactic Acid) plastic materials. The study is performed on a controlled environment and the specific machine settings. Appropriate tables, graphs are plotted and research analysis techniques will be utilized to analyse, verify and validate the experiment results.Keywords: FDM process, 3D printing, ABS for 3D printing, PLA for 3D printing, rapid prototyping
Procedia PDF Downloads 5996793 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates
Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.Keywords: sheep wool, water content, hygrothermal performance, mould growth risk
Procedia PDF Downloads 916792 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061
Authors: M. Ghosh, A. Miroux, L. A. I. Kestens
Abstract:
At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.Keywords: AA 6061, deformation, temperature, tensile, PSC, texture
Procedia PDF Downloads 4856791 Polymer in Electronic Waste: An Analysis
Authors: Anis A. Ansari, Aftab A. Ansari
Abstract:
Electronic waste is inundating the traditional solid-waste-disposal facilities, which are inadequately designed to handle and manage such type of new wastes. Since electronic waste contains mostly hazardous and even toxic materials, the seriousness of its effects on human health and the environment cannot be ignored in present scenario. Waste from the electronic industry is increasing exponentially day by day. From the last 20 years, we are continuously generating huge quantities of e-waste such as obsolete computers and other discarded electronic components, mainly due to evolution of newer technologies as a result of constant efforts in research and development in this sector. Polymers, one of the major constituents in almost every electronic waste, such as computers, printers, electronic equipment, entertainment devices, mobile phones, television sets etc., are if properly recycled can create a new business opportunity. This would not only create potential market for polymers to improve economy but also the priceless land used as dumping sites of electronic waste, can be utilized for other productive purposes.Keywords: polymer recycling, electronic waste, hazardous materials, electronic components
Procedia PDF Downloads 4756790 Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol
Authors: Javiera Poblete, Fernando Gajardo, Katherina Fernandez
Abstract:
Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated.Keywords: aerogel, graphene oxide, polyethylene glycol, synthesis
Procedia PDF Downloads 1266789 Shock Compressibility of Iron Alloys Calculated in the Framework of Quantum-Statistical Models
Authors: Maxim A. Kadatskiy, Konstantin V. Khishchenko
Abstract:
Iron alloys are widespread components in various types of structural materials which are exposed to intensive thermal and mechanical loads. Various quantum-statistical cell models with the approximation of self-consistent field can be used for the prediction of the behavior of these materials under extreme conditions. The application of these models is even more valid, the higher the temperature and the density of matter. Results of Hugoniot calculation for iron alloys in the framework of three quantum-statistical (the Thomas–Fermi, the Thomas–Fermi with quantum and exchange corrections and the Hartree–Fock–Slater) models are presented. Results of quantum-statistical calculations are compared with results from other reliable models and available experimental data. It is revealed a good agreement between results of calculation and experimental data for terra pascal pressures. Advantages and disadvantages of this approach are shown.Keywords: alloy, Hugoniot, iron, terapascal pressure
Procedia PDF Downloads 3426788 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1
Authors: Mohamed Mehdi Kadri
Abstract:
The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin
Procedia PDF Downloads 996787 Revealing the Manufacturing Techniques of the Leather Scale Armour of Tutankhamun by the Assist of Conservation Procedures
Authors: Safwat Mohamed, Rasha Metawi, Hadeel Khalil, Hussein Kamal
Abstract:
This paper discusses and reveals the manufacturing techniques of the leather scale armour of Tutankhamun. This armour was in critical condition and went under many conservation procedures as it suffered from some serious deterioration aspects including fragmentation. In addition, its original shape was lost, the leather scales were found scattered in the box and separated from the linen basis, and hence its outlines were blurred and incomprehensible. In view of this, the leather scale armour of Tutankhamun was desperate for urgent conservation and reconstruction interventions. Documentation measures were done before conservation. Several re-treatable conservation procedures were applied seeking for stabilizing the armour and reaching sustainable condition. The conservation treatments included many investigations and analyses that helped in revealing materials and techniques of making the armour. The leather scale armour of Tutankhamun consisted of leather scales attached to a linen support. This linen support consisted of several layers. Howard Carter assumed that the linen support consisted of 6 layers. The undertaken conservation treatments helped in revealing the actual number of layers of the linen support as well as in reaching the most sustainable condition. This paper views the importance of the conservation procedures, which were recently carried out on Tutankhamun’s leather scale armour, in identifying and revealing all materials and techniques used in its manufacturing. The collected data about manufacturing techniques were used in making a replica of the leather scale armour with the same methods and materials.Keywords: leather scales armours, conservation, manufacturing techniques, Tutankhamun, producing a replica
Procedia PDF Downloads 1016786 A Language Training Model for Pilots in Training
Authors: Aysen Handan Girginer
Abstract:
This study analyzes the possible causes of miscommunication between pilots and air traffic controllers by looking into a number of variables such as pronunciation, L1 interference, use of non-standard vocabulary. The purpose of this study is to enhance the knowledge of the aviation LSP instructors and to apply this knowledge to the design of new curriculum. A 16-item questionnaire was administered to 60 Turkish pilots who work for commercial airlines in Turkey. The questionnaire consists of 7 open-ended and 9 Likert-scale type questions. The analysis of data shows that there are certain pit holes that may cause communication problems for pilots that can be avoided through proper English language training. The findings of this study are expected to contribute to the development of new materials and to develop a language training model that is tailored to the needs of students of flight training department at the Faculty of Aeronautics and Astronautics. The results are beneficial not only to the instructors but also to the new pilots in training. Specific suggestions for aviation students’ training will be made during the presentation.Keywords: curriculum design, materials development, LSP, pilot training
Procedia PDF Downloads 3516785 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)
Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli
Abstract:
One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress
Procedia PDF Downloads 2176784 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures
Authors: Galih Permana, Yuskar Lase
Abstract:
In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.Keywords: building, coupling beam, damper, nonlinear time history analysis
Procedia PDF Downloads 1726783 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests
Authors: Monalisha Nayak, T. G. Sitharam
Abstract:
Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)
Procedia PDF Downloads 2326782 A New Correlation Between SPT-N and SSPT-N values for Various Soil Types in Peninsular Malaysia
Authors: Abdull Halim
Abstract:
The Standard Penetration Test (SPT-N) is the most common in situ test for soil investigations. The Shearing Seismic Standard Penetration Test (SSPT-N), on the other hand, is a new method using shearing wave with propagation exponent equation between the shearing wave, Vs., and hardness, N values without any need for borehole data. Due to the fast and accurate results that can be obtained, the SSPT has found many applications such as in the field rectification buried pipe line, the acid tank settlement and foundation design analyses, and the quality control assessment. Many geotechnical regimes and properties have attempted to correlate both the SSPT and the SPT-N values. Various foundation design methods have been developed based on the outcomes of these tests. Hence, it is pertinent to correlate these tests so that either one of the test can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationship between the SSPT-N and SPT-N values for different types of cohesive soil in Peninsular Malaysia. Data were collected from four different sites, and the correlations were established between the hardness N values, principal stress-strain Mohr circle curve, cohesion, friction angle and vertical effective stress. A positive exponent relationship was found between the shearing wave, sVs., and the hardness N values of the soil. In general, the SSPT-N value was slightly lower than the SPT-N value due to the upper limit boundary of the soil layer.Keywords: InsituSoil determination; shearing wave; hardness; correlation, SSPT-N, SPT-N
Procedia PDF Downloads 1846781 Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine
Authors: Rudzani Lusunzi, Frans Waanders, Elvis Fosso-Kankeu, Robert Khashane Netshitungulwana
Abstract:
The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF.Keywords: Nestor Mine, acid mine drainage, mitigation, Sabie River system
Procedia PDF Downloads 866780 Synthesis, Structural and Vibrational Studies of a New Lacunar Apatite: LIPB2CA2(PO4)3
Authors: A. Chari, A. El Bouari, B. Orayech, A. Faik, J. M. Igartua
Abstract:
The phosphate is a natural resource of great importance in Morocco. In order to exploit this wealth, synthesis and studies of new a material based phosphate, were carried out. The apatite structure present o lot of characteristics, One of the main characteristics is to allow large and various substitutions for both cations and anions. Beside their biological importance in hard tissue (bone and teeth), apatites have been extensively studied for their potential use as fluorescent lamp phosphors or laser host materials.The apatite have interesting possible application fields such as in medicine as materials of bone filling, coating of dental implants, agro chemicals as artificial fertilizers. The LiPb2Ca2(PO4)3 was synthesized by the solid-state method, its crystal structure was investigated by Rietveld analysis using XRPD data. This material crystallizes with a structure of lacunar apatite anion deficit. The LiPb2Ca2(PO4)3 is hexagonal apatite at room temperature, adopting the space group P63/m (ITA No. 176), Rietveld refinements showed that the site 4f is shared by three cations Ca, Pb and Li. While the 6h is occupied by the Pb and Li cations. The structure can be described as built up from the PO4 tetrahedra and the sixfold coordination cavities, which delimit hexagonal tunnels along the c-axis direction. These tunnels are linked by the cations occupying the 4 f sites. Raman and Infrared spectroscopy analyses were carried out. The observed frequencies were assigned and discussed on the basis of unit-cell group analysis and by comparison to other apatite-type materials.Keywords: apatite, Lacunar, crystal structure, Rietveldmethod, LiPb2Ca2(PO4)3, Phase transition
Procedia PDF Downloads 4046779 Design of the Fiber Lay-Up for the Composite Wind Turbine Blade in VARTM
Authors: Tzai-Shiung Li, Wen-Bin Young
Abstract:
The wind turbine blade sustains various kinds of loadings during the operating and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. In the fabrication process of the vacuum assisted resin transfer molding, the fiber content of the turbine blade depends on the vacuum pressure. In this study, a design of the fiber layup for the vacuum assisted resin transfer molding is conducted to achieve the efficient utilization the material strength. This design is for the wind turbine blade consisting of shell skins with or without the spar structure.Keywords: resin film infiltration, vacuum assisted resin transfer molding process, wind turbine blade, composite materials
Procedia PDF Downloads 3846778 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization
Procedia PDF Downloads 686777 Combined Effect of Zinc Supplementation and Ascaridia galli Infection on Oxidative Status in Broiler Chicks
Authors: Veselin Nanev, Margarita Gabrashanska, Neli Tsocheva-Gaytandzieva
Abstract:
Ascaridiasis in chicks is one of the major causes for the reduction in body weights, higher mortality, and reduction in egg production, worse meat quantity, pathological lesions, blood losses, and secondary infections. It is responsible for economic losses to the poultry. Despite being economically important parasite, little work has been carried out on the role of antioxidants in the pathogenesis of ascaridiasis. Zinc is a trace elements with multiple functions and one of them is its antioxidant ability. The aim of this study was to investigate the combined effect of organic zinc compound (2Gly.ZnCl22H20) and Ascaridia galli infection on the antioxidant status of broiler chicks. The activity of antioxidant enzymes superoxide dismutase, glutathione peroxidase, the level of lipid peroxidation, expressed by malonyl dialdexyde and plasma zinc in chicks experimentally infected with Ascaridia galli was investigated. Parasite burden was studied as well. The study was performed on 80 broiler chicks, Cobb 500 hybrids. They were divided into four groups – 1st group – control (non-treated and non-infected, 2nd group – infected with embryonated eggs of A. galli and without treatment, 3rd group- only treated with 2Gly.ZnCl22H20 compound and gr. 4 - infected and supplemented with Zn-compound. The chicks in gr. 2 and 4 were infected orally with 450 embryonated eggs of A.galli on day 14 post infection. The chicks from gr. 3 and 4 received 40 mg Zn compound /kg of feed after the 1st week of age during 10 days. All chicks were similarly fed, managed and killed at 60 day p.i. Helminthological, biochemical and statistical methods were applied. Reduced plasma Zn content was observed in the infected chicks compared to controls. Zinc supplementation did not restored the lower Zn content. Cu, Zn-SOD was decreased significantly in the infected chicks compared to controls. The GPx – activity was significantly increased in the infected chicks than the controls. Increased GPx activity together with decreased Cu/ZnSOD activity revealed unbalanced antioxidant defense capacity. The increased MDA level in chicks and changes in the activity of the enzymes showed a development of oxidative stress during the infection with A.galli. Zn compound supplementation has been shown to influence the activity of both antioxidant enzymes (SOD, GPx) and reduced MDA in the infected chicks. Organic zinc supplementation improved the antioxidant defense and protect hosts from oxidant destruction, but without any effect on the parasite burden. The number of helminths was similar in both groups. Zn supplementation did not changed the number of parasites. Administration of oral 2Gly.ZnCl22H20 compound has been shown to be useful in chicks infected with A. galli by its improvement of their antioxidant potential.Keywords: Ascaridia galli, antioxidants, broiler chicks, zinc supplementation
Procedia PDF Downloads 1366776 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building
Authors: Iuri Salukvadze
Abstract:
Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.Keywords: construction, seismic protection systems, soil, motor roads, concrete
Procedia PDF Downloads 2446775 Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium
Authors: Opeyemi Elujulo, Aderonke Okoya, Kehinde Awokoya
Abstract:
Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP).Keywords: molecularly imprinted polymer, bulk polymerization, environmental pollutant, adsorption
Procedia PDF Downloads 1426774 Corresponding Effect of Mycorhizal fungi and Pistachio on Absorption of Nutrition and Resistance on Salinity in Pistacia vera, L.
Authors: Hamid Mohammadi, S. H. Eftekhar Afzali
Abstract:
The irregular usage of chemical fertilizer cause different types of water and soil pollution and problems in health of human in past decades and organic fertilizer has been considered more and more. Mycorrhizal fungi have symbiosis with plant families and significantly effect on plant growth. Proper management of these symbiosis causes to reduce the usage of chemical fertilizers and absorb nutrition especially phosphor. Pistacia vera is endemic in Iran and is one of the most important products for this country. Considering special circumstances of pistachio orchards according to increasing salinity of water and soil and mismanagement of fertilizer reveals the necessity of the usage of Mycorrhizal fungi in these orchards.Keywords: pistachio, mycorhiza, nutrition, salinity
Procedia PDF Downloads 501