Search results for: COD removal efficiency
5132 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter
Procedia PDF Downloads 3045131 Qualitative Profiling Model and Competencies Evaluation to Fighting Unemployment
Authors: Francesca Carta, Giovanna Linfante, Laura Agneni, Debora Radicchia, Camilla Micheletta, Angelo Del Cimmuto
Abstract:
Overtaking competence mismatches and fostering career pathways congruent with the individual skills profile would significantly contribute to fighting unemployment. The aim of this paper is to examine the usefulness and efficiency of qualitative tools in supporting and improving the quality of caseworkers’ activities during the jobseekers’ profile analysis and career guidance process. The selected target groups are long-term and middle term unemployed, job seekers, young people at the end of the vocational training pathway and unemployed woman with social disadvantages. The experimentation is conducted in Italy at public employment services in 2017. In the framework of Italian labour market reform, the experimentation represents the first step to develop a customized qualitative model profiling; the final general object is to improve the public employment services quality. The experimentation tests the transferability of an OECD self-assessment competences tool in the Italian public employment services. On one hand, the first analysis results will indicate the user’s perception concerning the tool’s application and their different competence levels (literacy, numeracy, problem solving, career interest, subjective well-being and health, behavioural competencies) with reference to the specific target. On the other hand, the experimentation outcomes will show caseworkers understanding regarding the tool’s usability and efficiency for career guidance and reskilling and upskilling programs.Keywords: career guidance, evaluation competences, reskilling pathway, unemployment
Procedia PDF Downloads 3185130 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 2985129 Effect of Storey Number on Vierendeel Action in Progressive Collapse of RC Frames
Authors: Qian Huiya, Feng Lin
Abstract:
The progressive collapse of reinforced concrete (RC) structures will cause huge casualties and property losses. Therefore, it is necessary to evaluate the ability of structures against progressive collapse accurately. This paper numerically investigated the effect of storey number on the mechanism and quantitative contribution of the Vierendeel action (VA) in progressive collapse under corner column removal scenario. First, finite element (FE) models of multi-storey RC frame structures were developed using LS-DYNA. Then, the accuracy of the modeling technique was validated by test results conducted by the authors. Last, the validated FE models were applied to investigated the structural behavior of the RC frames with different storey numbers from one to six storeys. Results found the multi-storey substructure formed additional plastic hinges at the beam ends near the corner column in the second to top storeys, and at the lower end of the corner column in the first storey. The average ultimate resistance of each storey of the multi-storey substructures were increased by 14.0% to 18.5% compared with that of the single-storey substructure experiencing no VA. The contribution of VA to the ultimate resistance was decreased with the increase of the storey number.Keywords: progressive collapse, reinforced concrete structure, storey number, Vierendeel action
Procedia PDF Downloads 635128 The Scanning Vibrating Electrode Technique (SVET) as a Tool for Optimising a Printed Ni(OH)2 Electrode under Charge Conditions
Authors: C. F. Glover, J. Marinaccio, A. Barnes, I. Mabbett, G. Williams
Abstract:
The aim of the current study is to optimise formulations, in terms of charging efficiency, of a printed Ni(OH)2 precursor coating of a battery anode. Through the assessment of the current densities during charging, the efficiency of a range of formulations are compared. The Scanning vibrating electrode technique (SVET) is used extensively in the field of corrosion to measure area-averaged current densities of freely-corroding metal surfaces when fully immersed in electrolyte. Here, a Ni(OH)2 electrode is immersed in potassium hydroxide (30% w/v solution) electrolyte and charged using a range of applied currents. Samples are prepared whereby multiple coatings are applied to one substrate, separated by a non-conducting barrier, and charged using a constant current. With a known applied external current, electrode efficiencies can be calculated based on the current density outputs measured using SVET. When fully charged, a green Ni(OH)2 is oxidised to a black NiOOH surface. Distinct regions displaying high current density, and hence a faster oxidising reaction rate, are located using the SVET. This is confirmed by a darkening of the region upon transition to NiOOH. SVET is a highly effective tool for assessing homogeneity of electrodes during charge/discharge. This could prove particularly useful for electrodes where there are no visible surface appearance changes. Furthermore, a scanning Kelvin probe technique, traditionally used to assess underfilm delamination of organic coatings for the protection of metallic surfaces, is employed to study the change in phase of oxides, pre and post charging.Keywords: battery, electrode, nickel hydroxide, SVET, printed
Procedia PDF Downloads 2365127 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties
Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula
Abstract:
The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings
Procedia PDF Downloads 1085126 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing
Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi
Abstract:
This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management
Procedia PDF Downloads 2415125 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 755124 Factors Leading to the Renegotiation of Private Finance Initiative Design-Build-Finance-Operate Road Projects in the UK
Authors: Ajibola Fatokun, Akintola Akintoye, Champika Liyanage
Abstract:
The issue of renegotiation has not received public sector applause because of the outcomes recorded over years. Numerous reasons have been adduced by the stakeholders for the renegotiation of PPP road projects. In some instances, the reason can also be the factor leading to the renegotiation of PFI (DBFO) road projects. Thus, a number of factors inform the decision of the primary stakeholders to renegotiate the contract. This paper, therefore, evaluates and assesses the factors leading to the renegotiation of PFI (DBFO) road projects in the UK. Qualitative interviews involving both public and private stakeholders were extensively adopted on five PFI (DBFO) case study road projects in order to address the aim of this study. This serves to complement the findings of the literature with respect to the factors leading to the renegotiation of PPP road projects. The findings of this research reveal the respective factors leading to the renegotiations of PFI (DBFO) road projects in the UK. However, the prominent factors are a change in scope of the works necessitating works removal and an addition of assets, change in standards and obsolete specification occasioned by the long duration of the PFI road project concession among others.Keywords: renegotiation, factors, Private Finance Initiative (PFI), design-build-finance-operate (DBFO) road projects
Procedia PDF Downloads 3425123 Growth Performance, Survival Rate and Feed Efficacy of Climbing Perch, Anabas testudineus, Feed Experimental Diet with Several Dosages of Papain Enzyme
Authors: Zainal A. Muchlisin, Muhammad Iqbal, Abdullah A. Muhammadar
Abstract:
The objective of the present study was to determine the optimum dose of papain enzyme in the diet for growing, survival rate and feed efficacy of climbing perch (Anabas testudineus). The study was conducted at the Laboratory of Aquatic of Faculty of Veterinary, Syiah Kuala University from January to March 2016. The completely randomized design was used in this study. Six dosages level of papain enzyme were tested with 4 replications i.e. 0 g kg-1 of feed, 20.0 g kg-1 feed, 22.5 g kg-1 of feed, 25.0 g kg-1 of feed, 27.5 g kg-1 of feed, and 30.0 g kg-1 of feed. The experimental fish fed twice a day at feeding level of 5% for 60 days. The results showed that weight gain ranged from 2.41g to 7.37g, total length gain ranged from 0.67cm to 3.17cm, specific growth rate ranged from 1.46 % day to 3.41% day, daily growth rate ranged from 0.04 g day to 0.13 g day, feed conversion ratio ranged from 1.94 to 3.59, feed efficiency ranged from 27.99% to 51.37%, protein retention ranged from 3.38% to 28.28%, protein digestibility ranged from 50.63% to 90.38%, and survival rate ranged from 88.89% to 100%. The highest rate for all parameters was found in the dosage of 3.00% papain enzyme kg feed. The ANOVA test showed that enzyme papain gave a significant effect on the weight gain, total length gain, daily growth rate, specific growth rate, feed conversion ratio, feed efficiency, protein retention, protein digestibility, and survival rate of the climbing perch (Anabas testudieus). The best enzyme papain dosage was 3.0%.Keywords: betok, feed conversion ratio, freshwater fish, nutrition, feeding
Procedia PDF Downloads 2365122 The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study
Authors: Yaser S. Kishawi, Sadi R. Ali
Abstract:
Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.Keywords: soil aquifer treatment, recovery reuse scheme, infiltration basins, North Gaza
Procedia PDF Downloads 2045121 Smart Contracts: Bridging the Divide Between Code and Law
Authors: Abeeb Abiodun Bakare
Abstract:
The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.Keywords: smart-contracts, law, blockchain, legal, technology
Procedia PDF Downloads 455120 Impact of Microwave and Air Velocity on Drying Kinetics and Rehydration of Potato Slices
Authors: Caiyun Liu, A. Hernandez-Manas, N. Grimi, E. Vorobiev
Abstract:
Drying is one of the most used methods for food preservation, which extend shelf life of food and makes their transportation, storage and packaging easier and more economic. The commonly dried method is hot air drying. However, its disadvantages are low energy efficiency and long drying times. Because of the high temperature during the hot air drying, the undesirable changes in pigments, vitamins and flavoring agents occur which result in degradation of the quality parameters of the product. Drying process can also cause shrinkage, case hardening, dark color, browning, loss of nutrients and others. Recently, new processes were developed in order to avoid these problems. For example, the application of pulsed electric field provokes cell membrane permeabilisation, which increases the drying kinetics and moisture diffusion coefficient. Microwave drying technology has also several advantages over conventional hot air drying, such as higher drying rates and thermal efficiency, shorter drying time, significantly improved product quality and nutritional value. Rehydration kinetics of dried product is a very important characteristic of dried products. Current research has indicated that the rehydration ratio and the coefficient of rehydration are dependent on the processing conditions of drying. The present study compares the efficiency of two processes (1: room temperature air drying, 2: microwave/air drying) in terms of drying rate, product quality and rehydration ratio. In this work, potato slices (≈2.2g) with a thickness of 2 mm and diameter of 33mm were placed in the microwave chamber and dried. Drying kinetics and drying rates of different methods were determined. The process parameters included inlet air velocity (1 m/s, 1.5 m/s, 2 m/s) and microwave power (50 W, 100 W, 200 W and 250 W) were studied. The evolution of temperature during microwave drying was measured. The drying power had a strong effect on drying rate, and the microwave-air drying resulted in 93% decrease in the drying time when the air velocity was 2 m/s and the power of microwave was 250 W. Based on Lewis model, drying rate constants (kDR) were determined. It was observed an increase from kDR=0.0002 s-1 to kDR=0.0032 s-1 of air velocity of 2 m/s and microwave/air (at 2m/s and 250W) respectively. The effective moisture diffusivity was calculated by using Fick's law. The results show an increase of effective moisture diffusivity from 7.52×10-11 to 2.64×10-9 m2.s-1 for air velocity of 2 m/s and microwave/air (at 2m/s and 250W) respectively. The temperature of the potato slices increased for higher microwaves power, but decreased for higher air velocity. The rehydration ratio, defined as the weight of the the sample after rehydration per the weight of dried sample, was determined at different water temperatures (25℃, 50℃, 75℃). The rehydration ratio increased with the water temperature and reached its maximum at the following conditions: 200 W for the microwave power, 2 m/s for the air velocity and 75°C for the water temperature. The present study shows the interest of microwave drying for the food preservation.Keywords: drying, microwave, potato, rehydration
Procedia PDF Downloads 2705119 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forward osmosis, membrane, solar, water treatement
Procedia PDF Downloads 915118 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application
Authors: Mamta Bulla, Vinay Kumar
Abstract:
The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor
Procedia PDF Downloads 115117 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing
Authors: Rajni Kant Panik
Abstract:
The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.Keywords: hydrogel, nanoparticle, PLGA, wound healing
Procedia PDF Downloads 3115116 Cellulolytic and Xylanolytic Enzymes from Mycelial Fungi
Authors: T. Sadunishvili, L. Kutateladze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, M. Jobava, G. Kvesitadze
Abstract:
Multiple repeated soil-climatic zones in Georgia determines the diversity of microorganisms. Hundreds of microscopic fungi of different genera have been isolated from different ecological niches, including some extreme environments. Biosynthetic ability of microscopic fungi has been studied. Trichoderma ressei, representative of the Ascomycetes secrete cellulolytic and xylanolytic enzymes that act in synergy to hydrolyze polysaccharide polymers to glucose, xylose and arabinose, which can be fermented to biofuels. The other mesophilic strains producing cellulases are Allesheria terrestris, Chaetomium thermophile, Fusarium oxysporium, Piptoporus betulinus, Penicillium echinulatum, P. purpurogenum, Aspergillus niger, A. wentii, A. versicolor, A. fumigatus etc. In the majority of the cases the cellulases produced by strains of genus Aspergillus usually have high β-glucosidase activity and average endoglucanases levels (with some exceptions), whereas strains representing Trichoderma have high endo enzyme and low β-glucosidase, and hence has limited efficiency in cellulose hydrolysis. Six producers of stable cellulases and xylanases from mesophilic and thermophilic fungi have been selected. By optimization of submerged cultivation conditions, high activities of cellulases and xylanases were obtained. For enzymes purification, their sedimentation by organic solvents such as ethyl alcohol, acetone, isopropanol and by ammonium sulphate in different ratios have been carried out. Best results were obtained with precipitation by ethyl alcohol (1:3.5) and ammonium sulphate. The yields of enzyme according to cellulase activities were 80-85% in both cases. Cellulase activity of enzyme preparation obtained from the strain Trichoderma viride X 33 is 126 U/g, from the strain Penicillium canescence D 85–185U/g and from the strain Sporotrichum pulverulentum T 5-0 110 U/g. Cellulase activity of enzyme preparation obtained from the strain Aspergillus sp. Av10 is 120 U/g, xylanase activity of enzyme preparation obtained from the strain Aspergillus niger A 7-5–1155U/g and from the strain Aspergillus niger Aj 38-1250 U/g. Optimum pH and temperature of operation and thermostability, of the enzyme preparations, were established. The efficiency of hydrolyses of different agricultural residues by the microscopic fungi cellulases has been studied. The glucose yield from the residues as a result of enzymatic hydrolysis is highly determined by the ratio of enzyme to substrate, pH, temperature, and duration of the process. Hydrolysis efficiency was significantly increased as a result of different pretreatment of the residues by different methods. Acknowledgement: The Study was supported by the ISTC project G-2117, funded by Korea.Keywords: cellulase, xylanase, microscopic fungi, enzymatic hydrolysis
Procedia PDF Downloads 3925115 Numerical Iteration Method to Find New Formulas for Nonlinear Equations
Authors: Kholod Mohammad Abualnaja
Abstract:
A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms
Procedia PDF Downloads 5455114 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 535113 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy
Authors: Varsha Singh, Kishan Fuse
Abstract:
This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization
Procedia PDF Downloads 3075112 Return on Investment of a VFD Drive for Centrifugal Pump
Authors: Benhaddadi M., Déry D.
Abstract:
Electric motors are the single biggest consumer of electricity, and the consumption will have more than to double by 2050. Meanwhile, the existing technologies offer the potential to reduce the motor energy demand by up to 30 %, whereas the know-how to realise energy savings is not extensively applied. That is why the authors first conducted a detailed analysis of the regulation of the electric motor market in North America To illustrate the colossal energy savings potential permitted by the VFD, the authors have equipped experimental setup, based on centrifugal pump, simultaneously equipped with regulating throttle valves and variable frequency drive VFD. The obtained experimental results for 1.5 HP motor pump are extended to another motor powers, as centrifugal pumps that are different in power may have similar operational characteristics if they are located in a similar kind of process, permitting the simulations for 5 HP and 100 HP motors. According to the obtained results, VFDs tend to be most cost-effective when fitted to larger motor pumps, in addition to higher duty cycle of the motor and relative time operating at lower than full load. The energy saving permitted by the VFD use is huge, and the payback period for drive investment is short. Nonetheless, it’s important to highlight that there is no general rule of thumb that can be used to obtain the impact of the relative time operating at lower than full load. Indeed, in terms of energy-saving differences, 50 % flow regulation is tremendously better than 75 % regulation, but a slightly enhanced relative to 25 %. Two main distinct reasons can explain this somewhat not anticipated results: the characteristics of the process and the drop in efficiency when motor is operating at low speed.Keywords: motor, drive, energy efficiency, centrifugal pump
Procedia PDF Downloads 735111 Development of a System for Measuring the Three-axis Pedal Force in Cycling and Its Applications
Authors: Joo-Hack Lee, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack
Abstract:
For cycling, the analysis of the pedal force is one of the important factors in the study of exercise ability assessment and overuse injuries. In past studies, a two-axis measurement sensor was used at the sagittal plane to measure the force only in the anterior, posterior, and vertical directions and to analyze the loss of force and the injury on the frontal plane due to the forces in the right and left directions. In this study, which is a basic study on diverse analyses of the pedal force that consider the forces on the sagittal plane and the frontal plane, a three-axis pedal force measurement sensor was developed to measure the anterior-posterior (Fx), medio-lateral (Fz), and vertical (Fy) forces. The sensor was fabricated with a size and shape similar to those of the general flat pedal, and had a 550g weight that allowed smooth pedaling. Its measurement range was ±1000 N for Fx and Fz and ±2000 N for Fy, and its non-linearity, hysteresis, and repeatability were approximately 0.5%. The data were sampled at 1000 Hz using a signal collector. To use the developed sensor, the pedaling efficiency (index of efficiency, IE) and the range of left and right (medio-lateral, ML) forces were measured with two seat heights (low and high). The results of the measurement showed that the IE was higher and the force range in the ML direction was lower with the high position than with the low position. The developed measurement sensor and its application results will be useful in understanding and explaining the complicated pedaling technique, and will enable diverse kinematic analyses of the pedal force on the sagittal plane and the frontal plane.Keywords: cycling, pedal force, index of effectiveness, measuring
Procedia PDF Downloads 6615110 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell
Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene
Abstract:
The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental
Procedia PDF Downloads 1355109 Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool
Authors: Qiao Pei Wen, Ng Seng Lee, Sae Tae Veera, Chiu Ah Fong, Loke Weng Onn
Abstract:
Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition.Keywords: PECVD SiN deposition, sapphire wafer, substrate electrical conductivity, RF power coupling, high frequency RF power, low frequency RF power, film deposition rate, thickness uniformity
Procedia PDF Downloads 3765108 Treatment Performance of Waste Stabilization Ponds: A Look at Physic-Chemical Parameters in Ghana
Authors: Emmanuel Adu-Ofori, Richard Amfo-Otu, Isaac O. A. Hodgson
Abstract:
The study was conducted to determine the treatment performance of waste stabilization ponds in Akosombo. A total of 15 samples were taken for four consecutive months from the inlet, facultative pond and outlet of maturation pond. The samples were preserved and transported to Water Research Institute for laboratory analysis. The wastewater quality parameters analysed to assess the treatment performance were total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia and phosphate. The results of the laboratory analysis showed that the ponds achieved TSS, BOD and COD removals of about 30, 82 and 75 per cent respectively. Statistically, the BOD (t = 10.27, p = 6.68 x 10-6) and COD (t = 4.23, p = 0.0029) of the raw sewage were significantly different from the total effluent at 95% confidence interval. The ammonia and phosphate removal was as high as 92% and 84% respectively. The quality parameters analysed for the final effluent from the Waste Stabilisation Pond was within the EPA guideline values. The general treatment performances were very good with respect to the parameters studied and does not pose threat to the receiving water body. A further study to examine the bacteriological treatment performance was recommended.Keywords: waste stabilization pond, wast water, treatment performance, nutrient, Ghana
Procedia PDF Downloads 3195107 Assessing the Efficiency of Sports Stadiums in India: An Explorative Study of Socio-Economic Sustainability
Authors: Shivam Adhikary
Abstract:
Sports stadiums are not merely public amenities for entertainment and recreation for a city. They are buildings with extremely high construction investment and running costs which holds the supreme responsibility of social integration, nation building and financial upliftment of the community apart from its primary motive of conducting and promotion of the sports. But the present scenario of sports performances at international events and growing physical inactivity among the youth in India show that the sports facilities are far behind in achieving these goals. A pilot study of Indira Gandhi Sports complex in Vijayawada, Andhra Pradesh gave an indication of underutilization of sports stadia in India. This probed a crying need for the assessment of the present usage and functioning of the major sports (non-cricketing) facilities within the country. This paper assesses the sustainability of stadiums built for national and international sporting (non-cricket) events in terms of sporting, socio-cultural and financial sustainability by mainly focusing on their usage in non-event days. The criteria for the assessment and comparison of the stadiums within the nation is done using World Stadium Index and GDI (Gross Domestic Income) while with international counterparts using WSI and GNI (Gross National Income). The pilot case of India Gandhi Sports complex in Vijayawada is further investigated for a deeper understanding of the present usage, the existing issues for its underutilization and the way-forward (at least a few) to reach its sustainable potential. The paper finally concludes with the discussion on whether sports stadiums are being utilized to its financial potential and if it is at par with its international counterparts.Keywords: economic sustainability, social sustainability, sports infrastructure, stadium efficiency
Procedia PDF Downloads 2005106 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.Keywords: adsorption, dyes, fiber, valorization, wastewater
Procedia PDF Downloads 2895105 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 735104 Enhancing Embedded System Efficiency with Digital Signal Processing Cores
Authors: Anil H. Dhanawade, Akshay S., Harshal M. Lakesar
Abstract:
This paper presents a comprehensive analysis of the performance advantages offered by DSP (Digital Signal Processing) cores compared to traditional MCU (Microcontroller Unit) cores in the execution of various functions critical to real-time applications. The focus is on the integration of DSP functionalities, specifically in the context of motor control applications such as Field-Oriented Control (FOC), trigonometric calculations, back-EMF estimation, digital filtering, and high-resolution PWM generation. Through comparative analysis, it is demonstrated that DSP cores significantly enhance processing efficiency, achieving faster execution times for complex mathematical operations essential for precise torque and speed control. The study highlights the capabilities of DSP cores, including single-cycle Multiply-Accumulate (MAC) operations and optimized hardware for trigonometric functions, which collectively reduce latency and improve real-time performance. In contrast, MCU cores, while capable of performing similar tasks, typically exhibit longer execution times due to reliance on software-based solutions and lack of dedicated hardware acceleration. The findings underscore the critical role of DSP cores in applications requiring high-speed processing and low-latency response, making them indispensable in the automotive, industrial, and robotics sectors. This work serves as a reference for future developments in embedded systems, emphasizing the importance of architecture choice in achieving optimal performance in demanding computational tasks.Keywords: CPU core, DSP, assembly code, motor control
Procedia PDF Downloads 165103 Sustainable Renovation of Cultural Buildings Case Study: Red Bay National Historic Site, Canada
Authors: Richard Briginshaw, Hana Alaojeli, Javaria Ahmad, Hamza Gaffar, Nourtan Murad
Abstract:
Sustainable renovations to cultural buildings and sites require a high level of competency in the sometimes conflicting areas of social/historical demands, environmental concerns, and the programmatic and technical requirements of the project. A detailed analysis of the existing site, building and client program are critical to reveal both challenges and opportunities. This forms the starting point for the design process – empirical explorations that search for a balanced and inspired architectural solution to the project. The Red Bay National Historic Site on the Labrador Coast of eastern Canada is a challenging project to explore and resolve these ideas. Originally the site of a 16ᵗʰ century whaling station occupied by Basque sailors from France and Spain, visitors now experience this history at the interpretive center, along with the unique geography, climate, local culture and vernacular architecture of the area. Working with our client, Parks Canada, the project called for significant alterations and expansion to the existing facility due to an increase in the number of annual visitors. Sustainable aspects of the design are focused on sensitive site development, passive energy strategies such as building orientation and building envelope efficiency, active renewable energy systems, carefully considered material selections, water efficiency, and interiors that respond to human comfort and a unique visitor experience.Keywords: sustainability, renovations and expansion, cultural project, architectural design, green building
Procedia PDF Downloads 168