Search results for: neural perception.
1245 An Understanding of Corporate Social Responsibility in State-Owned Enterprises: The Case of Zimbabwe Revenue Authority
Authors: Melody Mandevere, Roselyn Cheruiyot
Abstract:
Through Corporate Social Responsibility (CSR), organizations contribute to a stable environment that leads to a predictable climate for investment and trade. Organizations are now deviating from traditional CSR, where it was believed that the only responsibility of an organization is to meet its shareholder's needs. Organizations and society now believe that an organization has many stakeholders that it must satisfy for it to be viable. The function of State-Owned Enterprises (SOEs) is not profit making but providing service and accomplishing public policy objectives. SOEs demand consideration in the current economic climate because they represent an important part of the economies of many countries. Given the importance and complex relationship of the stakeholders in SOE, the paper seeks to examine how full name first Zimra is implementing its CSR activities. SOE managers are responsible for CSR implementation and stakeholder engagement. ZIMRA is one of the parastatals that plays a crucial role in the Zimbabwean economy. It is, therefore, important to understand how Zimra is implementing CSR. Qualitative research was used for the research. Interviews were contacted with Zimra managers to understand how they are implementing CSR. Although Zimra managers understand the CSR concept, the organization does not have a CSR strategy that includes their stakeholders, which may have a negative impact on stakeholder perception and the organization's reputation. The funding of the CSR strategy is also not sustainable.Keywords: corporate social responsibility, managers, stakeholders, state-owned enterprises
Procedia PDF Downloads 911244 Corporate Governance and Business Ethical Values in Organisation: AStudyof Unilag Holdings
Authors: Aribisala Oluwadamilare Olufolarin
Abstract:
The objective of this research was to examine how corporate governance and ethical business values impact both the performance of the organization and its employees, as it is essential for any organization to uphold good ethics and corporate governance. The study was conducted at Unilag Holdings Limited (UniHOLDs) to demonstrate that organizations may experience losses if they do not have proper corporate governance and business ethical values in place. The employees' perception of corporate governance and ethics is crucial for the organization. The research indicated a connection between corporate governance and business ethics values, and therefore, correlation analysis was utilized, making it statistically reliable. The results of the test show a strong positive correlation (r=.812, N=94, P<.01) between corporate governance and business ethical values. A questionnaire was distributed to employees at Unilag Holdings Limited (UniHOLDs), with 94 out of 130 completed and returned. The findings indicate that ethical values contribute to employee productivity, and productive employees have a beneficial impact on the organization's performance. Additionally, the study revealed that employees tend to adhere to rules regardless of their ethical nature. To address this, the organization should ensure that top-level managers do not assign unethical tasks to their subordinates. The study recommends that the organization should consistently practice corporate governance and business ethics. The company needs to make sure that its stakeholders continue to support its way of doing things.Keywords: business ethics, business ethical values, corporate governance, organization
Procedia PDF Downloads 111243 The Impact of the Economic Crisis in the European Identity
Authors: Sofía Luna, Carla González Salamanca
Abstract:
The 2008 economic crisis had huge implications in Europe. In this continent, the repercussions of the crisis were not only economic but also political and institutional. The economic stress has generated changes in the perception of the citizens, their attitude and the confidence placed in the political organizations. The lost of confidence is not only present in the debtor countries but it is also present in the European economic powers like Germany and France. This research explains how the economic crisis had an impact in the identity, population’s attitude and how this generated the rise of extreme right parties. In addition, it defines the different types of attitudes and support that exist towards these political and economic institutions. The results of this investigation show that the depression beside of its economic implications, it caused institutional, social and political difficulties for the Union. Moreover, the support and attitudes of the population were severely strained because the confidence in the political organization decreased. Furthermore, a rise in the otherness sentiment was shown. In other words, the distinction between “us” and “them” increased causing repercussions in the collective European identity. Additionally, there was a spread in national identities that caused the rise of the extreme right wing parties. In conclusion, the 2008 economic crisis caused not only economic stress but also it generated a political, social and institutional crisis in Europe.Keywords: Europe, identity, economic crisis, otherness sentiment
Procedia PDF Downloads 4981242 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 631241 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids
Authors: Ajish K. Abraham
Abstract:
Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement
Procedia PDF Downloads 2471240 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 951239 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 841238 Views on Abortion and Case Law on International and European Levels: Past and Present Jurisprudence
Authors: Aurélie Cassiers
Abstract:
In this presentation, an overview is given of the freedom of states to legislate concerning abortion. Today, access to safe and legal abortion is still a hot topic in many countries in the world. Abortion policies try to strike a balance between women’s rights to self-determination and private life on the one hand, and the protection of the life of unborn children on the other. Each country has different religious, cultural and political views on abortion, and therefore specific legislations. However, citizens may submit a complaint at international courts when they find their national legislation too restrictive. The study is discussed of the development of the ECtHR, UNCHR, and IACHR case law, regarding the question of the ‘right to abort’ and indirectly of the protection of the unborn children. Each relevant case is analyzed to answer the following questions: Is the unborn child protected, and if so, how? Why does the woman want to abort and how is her interest or right protected? How is a fair balance reached between the different interests? Is the state completely free to write policies that restrict abortion? What are the factors to determine the margin of appreciation of the state? In conclusion, does this specific court recognize a right to abort, and if so, under which conditions? To conclude, this presentation shows that each court has its own perspective on and perception of abortion, and its own criteria to determine whether the state is complying with international norms regarding individual liberty and protection of the children.Keywords: abortion, international courts, unborn children, women rights
Procedia PDF Downloads 1291237 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 1811236 Effective Practical Proceedings in Breaking the Respiratory Infections Transmission Chain in the Community with the Emphasis on SARS-COV-2 Control
Authors: Fatemeh Aghamohammadzadeh, Mahdi Asghari Ozma
Abstract:
SARS-CoV-2 was transmitted from animals to humans in China and through air transport to almost all world countries, including Iran, creating the first pandemic of the 21st century. The virus was spread through droplets from sneezing, coughing, loud talking, and exhalation of sick and asymptomatic people, even during incubation. It was transmitted from human to human directly by inhalation of viruses in droplets or indirectly through contact with infected surfaces, resulting in the death of a significant number of patients, especially the elderly and those with underlying diseases. The virus is more likely to be transmitted in places with high population densities. The chain of transmission of infection can be broken by observing the following: risk perception, reduced travel, complete quarantine in a particular area, home quarantine, social distancing, use of personal protective equipment (PPE), prevention of gatherings, cleaning and disinfection of public utilities and busy places, identifying, isolating and treating infected people, tracking calls, continuing health education, following health principles by people, especially in poor areas, and washing their hands frequently with soap and water or disinfecting them with 70% ethanol.Keywords: COVID-19, transmission, population density, home quarantine, social distancing
Procedia PDF Downloads 1051235 Psycho-Social Issues: Drug Use and Abuse as a Social Problem among Secondary School Youths in Urban Centres of Benue State, Nigeria
Authors: Ode Kenneth Ogbu
Abstract:
This study was designed as a survey to investigate the incidence of use and abuse of drug as a social problem among the Nigeria youths in the secondary schools in urban centres of Benue state. 500 SS 3 and fresh secondary school graduates in remedial science class of Benue State University Makurdi with mean age of 16.8 were randomly sampled for the study. An instrument called drug use and abuse perception questionnaire (DAPQ) with a reliability coefficient of 74 were administered to the students. Only 337 copies of the questionnaire were properly completed and returned which reduced the sample size of 337. The data were subjected to factor analysis. X2 statistic and frequency distribution using split half method. The result of the analysis showed that: the DAPQ yield seven baseline factors responsible for drug use and abuse; there was appreciable evidence that the study subjects used drugs (42.1%); alcohol topped the list of the drugs consumed; most students use their pocket money to buy drugs; drugs were purchased from unconventional, hidden places and 13 out of the 20 items of DAPQ were perceived as significant factors in drug use and abuse. The paper recommends proper intervention of government, parents and NGO’S among students to reduce cases of drug abuse.Keywords: drug abuse, psychology, psychiatry, students
Procedia PDF Downloads 3091234 Corporate Governance and Business Ethical Values in Organisation: A Study of Unilag Holdings
Authors: Aribisala Oluwadamilare Olufolarin
Abstract:
The objective of this research was to examine how corporate governance and ethical business values impact both the performance of the organization and its employees, as it is essential for any organization to uphold good ethics and corporate governance. The study was conducted at Unilag Holdings Limited (UniHOLDs) to demonstrate that organizations may experience losses if they do not have proper corporate governance and business ethical values in place. The employees' perception of corporate governance and ethics is crucial for the organization. The research indicated a connection between corporate governance and business ethics values, and therefore, correlation analysis was utilized, making it statistically reliable. The results of the test show a strong positive correlation (r=.812, N=94, P<.01) between corporate governance and business ethical values. A questionnaire was distributed to employees at Unilag Holdings Limited (UniHOLDs), with 94 out of 130 completed and returned. The findings indicate that ethical values contribute to employee productivity, and productive employees have a beneficial impact on the organization's performance. Additionally, the study revealed that employees tend to adhere to rules regardless of their ethical nature. To address this, the organization should ensure that top-level managers do not assign unethical tasks to their subordinates. The study recommends that the organization should consistently practice corporate governance and business ethics. The company needs to make sure that its stakeholders continue to support its way of doing things.Keywords: business ethics, business ethical values, corporate governance and organization, corporate governance
Procedia PDF Downloads 111233 MGAUM—Towards a Mobile Government Adoption and Utilization Model: The Case of Saudi Arabia
Authors: Mohammed Alonazi, Natalia Beloff, Martin White
Abstract:
This paper presents a proposal for a mobile government adoption and utilization model (MGAUM), which is a framework designed to increase the adoption rate of m-government services in Saudi Arabia. Recent advances in mobile technologies such are Mobile compatibilities, The development of wireless communication, mobile applications and devices are enabling governments to deliver services in new ways to citizens more efficiently and economically. In the last decade, many governments around the globe are utilizing these advances effectively to develop their next generation of e-government services. However, a low adoption rate of m-government services by citizens is a common problem in Arabian countries, including Saudi Arabia. Yet, to our knowledge, very little research has been conducted focused on understanding the factors that influence citizen adoption of these m-government services in this part of the world. A set of social, cultural and technological factors have been identified in the literature, which has led to the formulation of associated research questions and hypotheses. These hypotheses will be tested on Saudi citizens using questionnaires and interview methods based around the technology acceptance model. A key objective of the MGAUM framework is to investigate and understand Saudi citizens perception towards adoption and utilization of m-government services.Keywords: e-government, m-government, citizen services quality, technology acceptance model, Saudi Arabia, adoption framework.
Procedia PDF Downloads 3111232 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1051231 Textile Firms Response to the Restriction of Nonylphenol and Its Ethoxylates: Looking from the Perspectives of Attitude and the Perceptions of Technical and Organizational Adaptabilities, Risks, Benefits, and Barriers
Authors: Hien T. T. Ho, Tsunemi Watanabe
Abstract:
The regulatory and market pressures on the restriction of nonylphenol and its ethoxylates in textile articles have confronted the textile manufacturers, particularly those in developing countries. This study aimed to examine the tentative behavior of the textile manufacturers in Vietnam from the perspectives of attitude and the perceptions of technical and organizational adaptabilities, risks, benefits, and barriers. Personal interviews were conducted with five technical specialists from four textile firms and one chemical supplier. The environmental regulatory and market situations regarding the chemical use in Vietnam were also described. The findings revealed two main opposing trends of chemical substitution depending on the market orientation of firms that governed the patterns of risk and benefit perception. The indirect influence of perceived adaptabilities on firm tentative behavior through perceived risks was elucidated, which initiated a conceptual model of firm’s behavior combining the organizational-based and the rational-based relationships. The intermediary role of non-governmental textile and garment industrial/ trade associations is highlighted to strengthen private firm’s informative capacity.Keywords: firm behavior, institutional analysis, organizational adaptation, technical adaptation
Procedia PDF Downloads 1641230 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1541229 Digital Wellbeing: A Multinational Study and Global Index
Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid
Abstract:
Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.Keywords: technology, health, behavioral addiction, digital wellbeing
Procedia PDF Downloads 791228 The Savior, the Absent, and the Model: The Role Social Workers Play in Young Women’s Romantic Relationships
Authors: Tehila Wright
Abstract:
Being involved in romantic relationships is a key task in the development of identity during emerging adulthood. To date, little research has focused on romantic relationships among young women who have coped with situations of distress and are treated by social workers. Moreover, the role of social workers in young women’s romantic relations is underexplored. This paper focuses on young women’s perception of the role played by their social workers in guiding them through romantic relationships. Methodology: This qualitative-feminist study is based on semi-structured in-depth interviews with 25 young heterosexual Jewish women aged 18-25 who are currently supported by social workers in the welfare system. Findings: The findings uncover three meanings given by participants to their relations with social workers regarding the young women's romantic relationships: 1)” The social worker as role model” namely, the social worker as setting an example for healthy conduct in romantic relationships. 2) "The social worker as savior," namely, the social worker as the one who supports participants escaping abusive romantic relationships. 3) "The present-absent social worker,” namely, despite being a significant figure in their lives, the social worker is experienced as disconnected and alienated. Conclusions and practice: Social workers can have a positive and important contribution to the romantic relationships of these young women. To be a central source of support in the young women's life, the social workers must be able to establish a relationship of trust with the young women.Keywords: young women, emerging adulthood, romantic relationship, women in distress
Procedia PDF Downloads 1091227 Traditional Management Systems and the Conservation of Cultural and Natural Heritage: Multiple Case Studies in Zimbabwe
Authors: Nyasha Agnes Gurira, Petronella Katekwe
Abstract:
Traditional management systems (TMS) are a vital source of knowledge for conserving cultural and natural heritage. TMS’s are renowned for their ability to preserve both tangible and intangible manifestations of heritage. They are a construct of the intricate relationship that exists between heritage and host communities, where communities are recognized as owners of heritage and so, set up management mechanisms to ensure its adequate conservation. Multiple heritage condition surveys were conducted to assess the effectiveness of using TMS in the conservation of both natural and cultural heritage. Surveys were done at Nharira Hills, Mahwemasimike, Dzimbahwe, Manjowe Rock art sites and Norumedzo forest which are heritage places in Zimbabwe. It assessed the state of conservation of the five case studies and assessed the role that host communities play in the management of these heritage places. It was revealed that TMS’s are effective in the conservation of natural heritage, however in relation to heritage forms with cultural manifestations, there are major disparities. These range from differences in appreciation and perception of value within communities leading to vandalism, over emphasis in the conservation of the intangible element as opposed to the tangible. This leaves the tangible element at risk. Despite these issues, TMS are a reliable knowledge base which enables more holistic conservation approaches for cultural and natural heritage.Keywords: communities, cultural intangible, tangible heritage, traditional management systems, natural
Procedia PDF Downloads 5591226 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1111225 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1111224 Come Play with Me: An Exploration of Rough-and-Tumble Play Interactions in Australian Families
Authors: Erin Louise Robinson, Emily Elsa Freeman
Abstract:
Rough-and-tumble play (RTP) is a physical and competitive type of play that parents engage in with their children. While past research has reported RTP to be the preferred play type for western fathers, the frequency of these interactions in Australian families have not been explored. With parental perceptions of play importance playing a major role in the frequency of activity engagement, the present study investigated how perceptions and parent gender impact on RTP play frequency. By utilising child gender in our approach, we also examined the historical trend of boys receiving more physical play interactions with their parents. Three hundred and seventy-nine respondents completed the study with their 0–10-year-old children. The results indicated that, in line with past research, parents engaged more frequently in RTP with their sons than their daughters. While, both mothers and fathers participated in RTP with their children, fathers perceived RTP to be of greater important to their child’s development than mothers did. Moreover, supporting previous findings, this more positive perception of the play was related to greater frequency of RTP in these father-child dyads. Although RTP literature remains heavily focussed on fathers, the fact that mothers are engaging in these interactions as well, establishes the need to explore maternal influences in future research.Keywords: parenting, play, child development, family, Australia
Procedia PDF Downloads 1971223 Motivation for Higher Education: An Exploration of Lived Experiences of Students with Disabilities in a Ghanaian University
Authors: Yaw Akoto
Abstract:
The social construction of disability in a Ghanaian society has created a restriction on the development of the academic potentials of persons with disabilities. Ghanaian societal perceptions position persons with disabilities as needy, evil, feeble and 'abnormal' that a person with disability cannot contribute anything meaningful to their own development, society, and the nation as well. Almost all Ghanaian cultures believe the Gods visit evil people with disability as such they erect barriers that limit them to select and enroll in education. The few people with disabilities who gain admission to schools drop out due to these barriers erected by the society and institutions. However, there are very few of these students who are able to pursue their education at the higher education level despite these challenges. This qualitative study explores the motivation of students with disabilities to select and enroll in a Ghanaian university. The study used semi-structured interview to solicit information from students with disabilities in a Ghanaian university. Although the quality of students with disabilities experience was affected by culture, discrimination, marginalisation, and lack of support, the prospect of using themselves as role models, employment opportunities and family impingement were among others that pushed them to embark on their educational journey. The findings of this study have implications for societal and institutional levels for restructuring and refining societal perception and institutional policies on disabilities.Keywords: beliefs, Ghanaian university, social construction, students with disabilities
Procedia PDF Downloads 1491222 Corporate Environmentalism: A Case Study in the Czech Republic
Authors: Pavel Adámek
Abstract:
This study examines perception of environmental approach in small and medium-sized enterprises (SMEs) – the process by which firms integrate environmental concern into business. Based on a review of the literature, the paper synthesizes focus on environmental issues with the reflection in a case study in the Czech Republic. Two themes of corporate environmentalism are discussed – corporate environmental orientation and corporate stances toward environmental concerns. It provides theoretical material on greening organizational culture that is helpful in understanding the response of contemporary business to environmental problems. We integrate theoretical predictions with empirical findings confronted with reality. Scales to measure these themes are tested in a survey of managers in 229 Czech firms. We used the process of in-depth questioning. The research question was derived and answered in the context of the corresponding literature and conducted research. A case study showed us that environmental approach is variety different (depending on the size of the firm) in SMEs sector. The results of the empirical mapping demonstrate Czech company’s approach to environment and define the problem areas and pinpoint the main limitation in the expansion of environmental aspects. We contribute to the debate for recognition of the particular role of environmental issues in business reality.Keywords: corporate environmentalism, Czech Republic, empirical mapping, environmental performance
Procedia PDF Downloads 3591221 Corporate Governance and Business Ethical Values in Organisation: A Study of Unilag Holdings
Authors: Ogunmayi Bamidele, Aribisala Oluwadamilare Olufolarin
Abstract:
The objective of this research was to examine how corporate governance and ethical business values impact both the performance of the organization and its employees, as it is essential for any organization to uphold good ethics and corporate governance. The study was conducted at Unilag Holdings Limited (UniHOLDs) to demonstrate that organizations may experience losses if they do not have proper corporate governance and business ethical values in place. The employees' perception of corporate governance and ethics is crucial for the organization. The research indicated a connection between corporate governance and business ethics values, and therefore, correlation analysis was utilized, making it statistically reliable. The results of the test show a strong positive correlation (r=.812, N=94, P<.01) between corporate governance and business ethical values. A questionnaire was distributed to employees at Unilag Holdings Limited (UniHOLDs), with 94 out of 130 completed and returned. The findings indicate that ethical values contribute to employee productivity, and productive employees have a beneficial impact on the organization's performance. Additionally, the study revealed that employees tend to adhere to rules regardless of their ethical nature. To address this, the organization should ensure that top-level managers do not assign unethical tasks to their subordinates. The study recommends that the organization should consistently practice corporate governance and business ethics. The company needs to make sure that its stakeholders continue to support its way of doing things.Keywords: business ethical values, corporate governance, organization, business ethics
Procedia PDF Downloads 171220 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 961219 Country of Origin, Ethnocentrism and Initial Trust in Indonesia: The Role of Religiosity and Subjective Knowledge
Authors: Adilla Anggraeni
Abstract:
The purpose of the paper is to investigate the effects of religiosity and subjective knowledge towards initial trust that a consumer has towards a product manufacturer. Since globalization enters the point of no return, it should be acknowledged that further exploration of country of origin image, its influences and possible limiting factors is imperative. This model aims to broaden COO-related research, especially related to different product categories based on the perception of consumers in emerging markets. The study employs quantitative method, aiming to involve 200 Indonesian respondents to evaluate different product categories (food/apparel). Relationships between variables are evaluated using structural equation modeling. It is expected that subjective knowledge will have significant influence towards initial trust that an individual possesses towards food products. A major contribution of this study will be the inclusion of religiosity and subjective knowledge in the country of origin study’s body of knowledge. Companies are also expected to benefit from the study as the acceleration of globalization may again repose the question of whether companies should market their product using similar strategies across different countries or different ones. Religiosity dimension is expected to add values to international marketing literature concerning emerging economies in particular, as many companies view the emerging economies as promising markets.Keywords: country of origin, subjective knowledge, initial trust, emerging economy, Indonesia
Procedia PDF Downloads 2901218 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 4811217 Mother Tounge Based Multilingual Education Policy: Voices of Two Cities, 'The Voice of Laguna'
Authors: Cecilia Velasco, Q.
Abstract:
This study was undertaken to find out the perceived efficiency, appropriateness effectiveness, acceptability and relevance, if at all such exist, of the Mother Tongue Based Multilingual Education Policy under the K-12 Curriculum, as seen by the stakeholders who are directly affected by this policy. The researcher believed that it is right and fitting to get the views and opinions of the people directly involved and/or concerned about this education policy. The results of the study will hopefully guide lawmakers and/or policymakers to fine-tune educational policy or policies. The locale of the study was the DepEd schools in Laguna, (San Pablo City and other nearby cities). The subjects of the study were the teachers (first phase) from the public schools of Department of Education (San Pablo City), in particular and parents (second phase) from nearby cities who are the direct stakeholders of this Policy. To determine the perception of the teachers toward Mother Tongue Based Multilingual Education Policy; its acceptability, efficiency, appropriateness, effectiveness and relevance, factor analysis was used to refine the instrument (questionnaire). To find out the significant difference between the perceptions of the primary and intermediate group of teachers, including those who teach mother tongue and non-mother tongue subjects, t-test of difference between means was employed.Keywords: DepEd, K12 curriculum, MTBMLE, stakeholders
Procedia PDF Downloads 2981216 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 44