Search results for: mass housing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4120

Search results for: mass housing

1570 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources

Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche

Abstract:

The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.

Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil

Procedia PDF Downloads 149
1569 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 239
1568 Long Term Monitoring and Assessment of Atmospheric Aerosols in Indo-Gangetic Region of India

Authors: Ningombam Linthoingambi Devi, Amrendra Kumar

Abstract:

The long term sampling at one of the most populated city in Indo-Gangetic region shows higher mass concentration of atmospheric aerosol (PM₂.₅) during spring season (144.70µg/m³), summer season (91.96 µg/m³), the autumn season (266.48µg/m³) and winter season (367.09 µg/m³) respectively. The concentration of PM₂.₅ in Patna across the year shows much higher than the limit fixed by the national ambient air quality level fixed by central pollution control board India (CPCB, India) and World Health Organization (WHO). Different water-soluble cation (Na⁺, K⁺, Ca²⁺, NH₄⁺ , and Mg²⁺) and anion (Cl⁻, NO₃⁻ , and SO₄²⁻) species were detected in PM₂.₅. Results show the significantly higher loaded of water-soluble ions during winter and spring seasons. The acidity of the atmosphere was revealed and calculated using selected major cations (K⁺, Ca²⁺ , and NH₄⁺) and anions (SO₄²⁻, and NO₃⁻). A regression correlation was analyzed to check the significant linkage between the acidity and alkalinity ions. During the winter season (r² = 0.79) and spring season (r² = 0.64) shows good significant correlation between the cations and anions. The ratio of NO₃⁻/SO₄²⁻ indicates the sources of secondary pollutants were mainly influenced by industrial and vehicular emission however SO₄²⁻ mostly emitted from industries during the winter season.

Keywords: aerosols, inorganic species, source apportionment, Indo-Gangetic region

Procedia PDF Downloads 117
1567 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion

Procedia PDF Downloads 404
1566 Environmental and Formal Conditions for the Development of Blue-green Infrastructure (BGI) in the Cities of Central Europe on the Example of Poland

Authors: Magdalena Biela, Marta Weber-Siwirska, Edyta Sierka

Abstract:

The current noticed trend in Central European countries, as in other regions of the world, is for people to migrate to cities. As a result, the urban population is to have reached 70% of the total by 2050. Due to this tendency, as well as taking high real estate prices and limited reserves of city green areas into consideration, the greenery and agricultural soil adjacent to cities is are to be devoted to housing projects, while city centres are expected to undergo partial depopulation. Urban heat islands and phenomena such as torrential rains may cause serious damage. They may even endanger the very life and health of the inhabitants. Due to these tangible effects of climate change, residents expect that local government takes action to develop green infrastructure (GI). The main purpose of our research has been to assess the degree of readiness on the part of the local government in Poland to develop BGI. A questionnaire using the CAWI method was prepared, and a survey was carried out. The target group were town hall employees in all 380 powiat cities and towns (380 county centres) in Poland. The form contained 14 questions covering, among others, actions taken to support the development of GI and ways of motivating residents to take such actions. 224 respondents replied to the questions. The results of the research show that 52% of the cities/towns have taken or intend to take measures to favour the development of green spaces. Currently, the installation of green roofs and living walls is are only carried out by 6 Polish cities, and a few more are at the stage of preparing appropriate regulations. The problem of rainwater retention is much more widespread. Among the municipalities declaring any activities for the benefit of GI, approximately 42% have decided to work on this problem. Over 19% of the respondents are planning an increase in the surface occupied by green areas, 14% - the installation of green roofs, and 12% - redevelopment of city greenery. It is optimistic that 67% of the respondents are willing to acquire knowledge about BGI by means of taking part in educational activities both at the national and international levels. There are many ways to help GI development. The most common type of support in the cities and towns surveyed is co-financing (35%), followed by full financing of projects (11%). About 15% of the cities declare only advisory support. Thus, the problem of GI in Central European cities is at the stage of initial development and requires advanced measures and implementation of both proven solutions applied in other European and world countries using the concept of Nature-based Solutions.

Keywords: city/town, blue-green infrastructure, green roofs, climate change adaptation

Procedia PDF Downloads 192
1565 Facial Infiltrating Lipomatosis, a Rare Cause of Facial Asymmetry to Be Known: Case Report and Literature Review

Authors: Shantanu Vyas, Neerja Meena

Abstract:

Facial infiltrating lipomatosis is a rare lipomatous lesion, first described by Slavin in 1983. It is a benign pseudotumor pathology. It corresponds to a non-encapsulated collection of mature adipocytes infiltrating the local tissue and hyperplasia of underlying bone leading to a craniofacial deformity. Very few cases have been reported in the literature. We report the case of a 19-year-old female patient, who was consulted for a swelling of the right hemiface progressively evolving since birth. Physical examination revealed facial asymmetry. On palpation, the mass was soft, painless, not compressible, not pulsatile, not fluctuating. In view of the asymptomatic nature and slow progression of the lesion, a lipomatous tumour, namely lipoma, was suggested. CT scan image shows a hyperplastic subcutaneous fat on the right hemiface. On the right jugal and temporal areas, there is a subcutaneous formation of fatty density, poorly limited, with no detectable peripheral capsule. It merges with the adjacent fat. In the bone window, there was a hyperplasia of underlying bone. Facial lipomatosis infiltration of the face is a benign pseudotumor pathology. As a result, it can be confused with other disorders, in particular, hemifacial hyperplasia. Combination of physical and radiological findings can establish the diagnosis. Surgical treatment is done for cosmetic purposes.

Keywords: cosmetic correction and facial assemetry, aesthetic results, facial infiltration, surgery

Procedia PDF Downloads 56
1564 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 273
1563 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 297
1562 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City

Authors: Berhanu Keno Terfa

Abstract:

Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.

Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.

Procedia PDF Downloads 12
1561 Osteometry of the Long Bones of Adult Chinkara (Gazella bennettii): A Remarkable Example of Sexual Dimorphism

Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Saima Ashraf, Imad Khan

Abstract:

The objective of this study was 1) to measure osteometric parameters of the long bones of the adult Chinkara to obtain baseline data 2) to study sexual dimorphism in the adult Chinkara through osteometry and 3) to estimate body weight from the measurements of greatest length and shaft of the long bones. For this purpose, after taking body measurements of adult Chinkara after mortality, the carcass of adult Chinkara of known sex and age were buried in the locality of the Manglot Wildlife Park and Ungulate Breeding Centre, Nizampur, Pakistan; after a specific period of time, the bones were unearthed. Various osteometric parameters of the humerus, radius, metacarpus, femur, tibia and metatarsal were measured through the digital calliper. Statistically significant (P < 0.05), differences in some of the osteometrical parameters between male and female adult Chinkara were observed. Sexual dimorphism exit between the long bones of male and female adult Chinkara. In both male and female Chinkara value obtained for the estimated body weight from humeral, metacarpal and metatarsal measurements were near to the actual body weight of the adult Chinkara. In conclusion, the present study estimates preliminary data on long bones osteometrics and suggests that the morphometric details of the male and female adult Chinkara have differed morphometrically from each other.

Keywords: body mass measurements, Chinkara, long bones, morphometric, sexual dimorphism

Procedia PDF Downloads 116
1560 Material Analysis for Temple Painting Conservation in Taiwan

Authors: Chen-Fu Wang, Lin-Ya Kung

Abstract:

For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.

Keywords: temple painting, painting material, conservation, FT-IR

Procedia PDF Downloads 172
1559 Equation for Predicting Inferior Vena Cava Diameter as a Potential Pointer for Heart Failure Diagnosis among Adult in Azare, Bauchi State, Nigeria

Authors: M. K. Yusuf, W. O. Hamman, U. E. Umana, S. B. Oladele

Abstract:

Background: Dilatation of the inferior vena cava (IVC) is used as the ultrasonic diagnostic feature in patients suspected of congestive heart failure. The IVC diameter has been reported to vary among the various body mass indexes (BMI) and body shape indexes (ABSI). Knowledge of these variations is useful in precision diagnoses of CHF by imaging scientists. Aim: The study aimed to establish an equation for predicting the ultrasonic mean diameter of the IVC among the various BMI/ABSI of inhabitants of Azare, Bauchi State-Nigeria. Methodology: Two hundred physically healthy adult subjects of both sexes were classified into under, normal, over, and obese weights using their BMIs after selection using a structured questionnaire following their informed consent for an abdominal ultrasound scan. The probe was placed on the midline of the body, halfway between the xiphoid process and the umbilicus, with the marker on the probe directed towards the patient's head to obtain a longitudinal view of the IVC. The maximum IVC diameter was measured from the subcostal view using the electronic caliper of the scan machine. The mean value of each group was obtained, and the results were analysed. Results: A novel equation {(IVC Diameter = 1.04 +0.01(X) where X= BMI} has been generated for determining the IVC diameter among the populace. Conclusion: An equation for predicting the IVC diameter from individual BMI values in apparently healthy subjects has been established.

Keywords: equation, ultrasonic, IVC diameter, body adiposities

Procedia PDF Downloads 55
1558 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method

Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama

Abstract:

Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.

Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics

Procedia PDF Downloads 99
1557 Mass Pheromone Trapping on Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Oil Palm Plantations of Terengganu

Authors: Wahizatul Afzan Azmi, Nur Ain Farhah Ros Saidon Khudri, Mohamad Haris Hussain, Tse Seng Chuah

Abstract:

Malaysia houses a broad range of palm trees species and some of these palm trees are very crucial for the country’s social and economic development, especially the oil palm trees. However, the destructive pest of the various palms species, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) or known as Red Palm Weevil (RPW) was first detected in Terengganu in 2007. Recently, the pattern of infestation has move from coastal lines toward inland areas. After the coconut plantations, it is presumed that the RPW will be a serious threat to the oil palm plantations in Malaysia. Thus, this study was carried out to detect the presence and distribution of Red Palm Weevil (RPW) in selected oil palm plantations of Terengganu. A total of 42 traps were installed in the three oil palm plantations in Terengganu and were inspected every week for two months. Oil palm plantation A collected significantly higher adults RPW compared to the other locations. Generally, females of RPW were significantly higher than male individuals. Females were collected more as the synthetic aggregation pheromone used, ferrugineol was synthesized from the male aggregation pheromone of adult RPW. Oil palm plantation A collected the highest number of RPW might be due to the abundance of soft part in the host plant as the oil palm trees age ranged between 6 to 10 years old. As a conclusion, RPW presence was detected in some oil palm plantations of Terengganu and immediate action is crucially needed before it is too late.

Keywords: red palm weevil, pest, oil palm, pheromone

Procedia PDF Downloads 192
1556 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 328
1555 Valorisation of a Bioflocculant and Hydroxyapatites as Coagulation-Flocculation Adjuvants in Wastewater Treatment of the Steppe in the Wilaya of Saida

Authors: Fatima Zohra Choumane, Belkacem Benguella, Bouhana Maachou, Nacera Saadi

Abstract:

Pollution caused by wastewater is a serious problem in Algeria. This pollution has certainly harmful effects on the environment. In order to reduce the bad effects of these pollutants, many wastewater treatment processes, mainly physicochemical, are implemented. This study consists in using two flocculants; the first one is a biodegradable natural bioflocculant, i.e. Cactaceaeou ficus-indica cactus juice, and the second is the synthetic hydroxyapatite, in a physico-chemical process through coagulation-flocculation, using two coagulants, i.e. ferric chloride and aluminum sulfate, to treat wastewater collected at the entrance of the treatment plant, in the town of Saida. The influence of various experimental parameters, such as the amounts of coagulants and flocculants used, pH, turbidity, COD and BOD5, was investigated. The coagulation - flocculation jar tests of wastewater reveal that ferric chloride, containing a mass of 0.3 g – hydroxyapatite, treated for 1 hour through calcination, is the most effective adjuvant in clarifying the wastewater, with turbidity equal to 98.16 %. In the presence of the two bioflocculants, Cactaceae juice and aluminum sulphate, with a dose of 0.2 g, flocculation is good, with turbidity equal to 95.61 %. Examination of the key reaction parameters, following the flocculation tests of wastewater, shows that the degree of pollution decreases. This is confirmed by the COD and turbidity values obtained. Examination of these results suggests the use of these flocculants in wastewater treatment.

Keywords: wastewater, cactus ficus-indica, hydroxyapatite, coagulation - flocculation

Procedia PDF Downloads 322
1554 The Effects of a Hippotherapy Simulator in Children with Cerebral Palsy: A Pilot Study

Authors: Canan Gunay Yazici, Zubeyir Sarı, Devrim Tarakci

Abstract:

Background: Hippotherapy considered as global techniques used in rehabilitation of children with cerebral palsy as it improved gait pattern, balance, postural control, balance and gross motor skills development but it encounters some problems (such as the excess of the cost of horses' care, nutrition, housing). Hippotherapy simulator is being developed in recent years to overcome these problems. These devices aim to create the effects of hippotherapy made with a real horse on patients by simulating the movements of a real horse. Objectives: To evaluate the efficacy of hippotherapy simulator on gross motor functions, sitting postural control and dynamic balance of children with cerebral palsy (CP). Methods: Fourteen children with CP, aged 6–15 years, seven with a diagnosis of spastic hemiplegia, five of diplegia, two of triplegia, Gross Motor Function Classification System level I-III. The Horse Riding Simulator (HRS), including four-speed program (warm-up, level 1-2-3), was used for hippotherapy simulator. Firstly, each child received Neurodevelopmental Therapy (NDT; 45min twice weekly eight weeks). Subsequently, the same children completed HRS+NDT (30min and 15min respectively, twice weekly eight weeks). Children were assessed pre-treatment, at the end of 8th and 16th week. Gross motor function, sitting postural control, dynamic sitting and standing balance were evaluated by Gross Motor Function Measure-88 (GMFM-88, Dimension B, D, E and Total Score), Trunk Impairment Scale (TIS), Pedalo® Sensamove Balance Test and Pediatric Balance Scale (PBS) respectively. Unit of Scientific Research Project of Marmara University supported our study. Results: All measured variables were a significant increase compared to baseline values after both intervention (NDT and HRS+NDT), except for dynamic sitting balance evaluated by Pedalo®. Especially HRS+NDT, increase in the measured variables was considerably higher than NDT. After NDT, the Total scores of GMFM-88 (mean baseline 62,2 ± 23,5; mean NDT: 66,6 ± 22,2; p < 0,05), TIS (10,4 ± 3,4; 12,1 ± 3; p < 0,05), PBS (37,4 ± 14,6; 39,6 ± 12,9; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 92,3 ± 5,2; p > 0,05) and Pedalo® standing balance points (80,2 ± 10,8; 82,5 ± 11,5; p < 0,05) increased by 7,1%, 2%, 3,9%, 5,2% and 6 % respectively. After HRS+NDT treatment, the total scores of GMFM-88 (mean baseline: 62,2 ± 23,5; mean HRS+NDT: 71,6 ± 21,4; p < 0,05), TIS (10,4 ± 3,4; 15,6 ± 2,9; p < 0,05), PBS (37,4 ± 14,6; 42,5 ± 12; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 93,8 ± 3,7; p > 0,05) and standing balance points (80,2 ± 10,8; 86,2 ± 5,6; p < 0,05) increased by 15,2%, 6%, 7,3%, 6,4%, and 11,9%, respectively, compared to the initial values. Conclusion: Neurodevelopmental therapy provided significant improvements in gross motor functions, sitting postural control, sitting and standing balance of children with CP. When the hippotherapy simulator added to the treatment program, it was observed that these functions were further developed (especially with gross motor functions and dynamic balance). As a result, this pilot study showed that the hippotherapy simulator could be a useful alternative to neurodevelopmental therapy for the improvement of gross motor function, sitting postural control and dynamic balance of children with CP.

Keywords: balance, cerebral palsy, hippotherapy, rehabilitation

Procedia PDF Downloads 126
1553 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala

Authors: Sami Mohamed Sharif

Abstract:

The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.

Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying

Procedia PDF Downloads 43
1552 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan

Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata

Abstract:

The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.

Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint

Procedia PDF Downloads 290
1551 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 372
1550 Androgenic and Spermatogenic Activity of Alkylamide-Rich Ethanol Solution Extract of Anacyclus Pyrethrum Dc

Authors: Vikas Sharma, V. K. Dixit

Abstract:

Anacyclus pyrethrum (A. pyrethrum) has been used as Vajikaran Rasayana (aphrodisiac) in traditional Indian ayurvedic medicine to treat male sexual dysfunction, including infertility. Aphrodisiac activity may be due to an increase in the production or effect of androgens, so this study sought to evaluate the androgenic and spermatogenic potential of the alkylamide-rich ethanol solution extract. Male Wistar strain rats weighing between 150 and 180 g were completely randomized divided into five groups. The ethanol solution extract of A. pyrethrum was administered to groups of rats in 50, 100, and 150 mg/kg doses for a period of 28 days, and the action was compared with control and testosterone-treated rats. Thirteen N-alkylamides were detected in the extract by using HPLC/UV/electrospray ionization mass spectrometry method. Extract administration at all the doses produced significant increase in body weight, sperm count, motility, and viability along with serum testosterone, luteinizing hormone, and follicle-stimulating hormone concentrations. Histoarchitecture of testis revealed increased spermatogenic activities. Seminal fructose content was also significantly increased after 28 days of treatment. Our results suggest that the ethanol solution extract of the roots of A. pyrethrum has androgenic potential and may improve male fertility by enhancing spermatogenesis.

Keywords: N-alkylamides, testosterone, Anacyclus pyrethrum, androgen

Procedia PDF Downloads 460
1549 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity

Procedia PDF Downloads 260
1548 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine

Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi

Abstract:

One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.

Keywords: Combustion, Optically Accessible Engine, Spark-Ignition Engine, Sparl Orientation, Kernel Growth

Procedia PDF Downloads 127
1547 Modified Single-Folded Potentials for the Alpha-²⁴Mg and Alpha-²⁸Si Elastic Scattering

Authors: M. N. A. Abdullah, Pritha Roy, R. R. Shil, D. R. Sarker

Abstract:

Alpha-nucleus interaction is obscured because it produces enhanced cross-sections at large scattering angles known as anomaly in large angle scattering (ALAS). ALAS is prominent in the elastic scattering of α-particles as well as in non-elastic processes involving α-particles for incident energies up to 50 MeV and for targets of mass A ≤ 50. The Woods-Saxon type of optical model potential fails to describe the processes in a consistent manner. Folded potential is a good candidate and often used to construct the potential which is derived from the microscopic as well as semi-microscopic folding calculations. The present work reports the analyses of the elastic scattering of α-particles from ²⁴Mg and ²⁸Si at Eα=22-100 MeV and 14.4-120 MeV incident energies respectively in terms of the modified single-folded (MSF) potential. To derive the MSF potential, we take the view that the nucleons in the target nuclei ²⁴Mg and ²⁸Si are primarily in α-like clusters and the rest of the time in unclustered nucleonic configuration. The MSF potential, found in this study, does not need any renormalization over the whole range of incident α energies, and the renormalization factor has been found to be exactly 1 for both the targets. The best-fit parameters yield 4Aα = 21 and AN = 3 for α-²⁴Mg potential, and 4Aα = 26 and AN = 2 for α-²⁸Si potential in time-average pictures. The root-mean-square radii of both ²⁴Mg and ²⁸Si are also deduced, and the results obtained from this work agree well with the outcomes of other studies.

Keywords: elastic scattering, optical model, folded potential, renormalization

Procedia PDF Downloads 212
1546 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji

Abstract:

In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.

Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed

Procedia PDF Downloads 364
1545 Cationic Surfactants Influence on the Fouling Phenomenon Control in Ultrafiltration of Latex Contaminated Water and Wastewater

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

The goal of the present study was to minimize the ultrafiltration fouling of latex effluent using Cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant. Hydrophilic Polysulfone and Ultrafilic flat heterogeneous membranes, with MWCO of 60,000 and 100,000, respectively, as well as hydrophobic Polyvinylidene Difluoride with MWCO of 100,000, were used under a constant flow rate and cross-flow mode in ultrafiltration of latex solution. In addition, a Polycarbonate flat membrane with uniform pore size of 0.05 µm was also used. The effect of CTAB on the latex particle size distribution was investigated at different concentrations, various treatment times, and diverse agitation duration. The effects of CTAB on the zeta potential of latex particles and membrane surfaces were also investigated. The results obtained indicated that the particle size distribution of treated latex effluent showed noticeable shifts in the peaks toward a larger size range due to the aggregation of particles. As a consequence, the mass of fouling contributing to pore blocking and the irreversible fouling were significantly reduced. The optimum results occurred with the addition of CTAB at the critical micelle concentration of 0.36 g/L for 10 minutes with minimal agitation. Higher stirring rate had a negative effect on membrane fouling minimization.

Keywords: cationic surfactant, latex particles, membrane fouling, ultrafiltration, zeta potential

Procedia PDF Downloads 516
1544 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health

Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo

Abstract:

The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.

Keywords: chromatography, DNA damage, environmental risk, water pollution

Procedia PDF Downloads 204
1543 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L. Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates.

Keywords: non destructive, paint coating, thickness, infrared thermography, laser, heterogeneity

Procedia PDF Downloads 626
1542 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank

Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park

Abstract:

When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.

Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)

Procedia PDF Downloads 682
1541 An Exploration of First Year Bachelor of Education Degree Students’ Learning Preferences in Academic Literacy in a Private Higher Education Institution: A Case for the Blended Learning Approach

Authors: K. Kannapathi-Naidoo

Abstract:

The higher education landscape has undergone changes in the past decade, with concepts such as blended learning, online learning, and hybrid models appearing more frequently in research and practice. The year 2020 marked a mass migration from face-to-face learning and more traditional forms of education to online learning in higher education institutions across the globe due to the Covid-19 pandemic. As a result, contact learning students and lecturing staff alike were thrust into the world of online learning at an unprecedented pace. Traditional modes of learning had to be amended, and pedagogical strategies required adjustments. This study was located within a compulsory first-year academic literacy module in a higher education institution. The study aimed to explore students’ learning preferences between online, face-face, and blended learning within the context of academic literacy. Data was collected through online qualitative questionnaires administered to 150 first-year students, which were then analysed thematically. The findings of the study revealed that 48.5% of the participants preferred a blended learning approach to academic literacy. The main themes that emerged in support of their preference were best of both worlds, flexibility, productivity, and lecturer accessibility. As a result, this paper advocates for the blended learning approach for academic literacy skills-based modules.

Keywords: academic literacy, blended learning, online learning, student learning preferences

Procedia PDF Downloads 61