Search results for: geotechnical random variables
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6251

Search results for: geotechnical random variables

3701 Crater Pattern on the Moon and Origin of the Moon

Authors: Xuguang Leng

Abstract:

The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth.

Keywords: moon, origin, crater, pattern

Procedia PDF Downloads 96
3700 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 151
3699 Effects of Age and Energy Expenditure on Obesity Among Adults in Abeokuta, Nigeria

Authors: Adeniyi Samuel Adekoya

Abstract:

The study assessed the independent effects of age and energy expenditure on the risks of obesity among adults (20-64 years). A cross-sectional study with changes in age, changes in work and leisure-time, and physical activities information played roles, with cut-off for energy expenditure and BMI in rural and urban localities. Physical activity information determined the energy expenditure, while the BMI determined the risk of obesity among the subjects. Statistically, age has a strong and direct association with obesity in both rural and urban settings, while energy expenditure was inverse in its association. Findings from the this study showed that in developing societies, age tends to be a risk factor for obesity, whereas energy expenditure is to be protective. Level of education and economic development are also relevant modifiers of the influences exerted by these variables.

Keywords: age, energy expenditure, BMI, rural/urban

Procedia PDF Downloads 425
3698 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment

Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai

Abstract:

Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.

Keywords: computational methods, MATLAB, seismic hazard, seismic measurements

Procedia PDF Downloads 339
3697 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 294
3696 Epidemiology, Knowledge, Attitude, and Practices among Patients of Stroke

Authors: Vijay nandmer, Ajay Nandmer

Abstract:

Stigmatized psycho-social perception poses a serious challenge and source of discrimination which impedes stroke patients from attaining a satisfactory quality of life. The present study was aimed to obtain information on knowledge, attitudes and practices (KAP) of stroke patients in the institute. We included 1000 people in our random sampling survey. Demographic details and responses to a questionnaire assessing the knowledge, attitude and practices were recorded. Although the majority of the patients belonged to low socioeconomic strata, the literacy rate was reasonably high (96.3%). A large majority (91.3%) of people had heard about stroke and (85.2%) knew that stroke can be treated with modern drugs. However, a negative attitude was reflected in the belief that stroke happens due to supernatural powers (hawa lagne se) (50.6%). Analysis of the data revealed regional differences in KAP which could be attributed to local Factors, such as literacy, awareness about stroke, and practice of different systems of medicine. Some of the differences can also be attributed to a category of study population whether it included patients or non-stroke individuals since the former are likely to have less negative attitudes than the public. There is a need to create awareness about stroke on a nation-wide basis to dispel the misconceptions and stigma through effective and robust programs with the aim to lessen the disease burden.

Keywords: epidemiology, sroke, literacy, stroke

Procedia PDF Downloads 386
3695 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran

Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro

Abstract:

The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.

Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis

Procedia PDF Downloads 529
3694 Dissatisfaction as a Cause of Social Uprisings: An Empirical Analysis Utilizing the Social Uprisings Composite Indicator

Authors: Sondos Shaheen

Abstract:

This paper employs a newly constructed composite indicator of social uprisings (SUCI) to analyze the causes of their occurrence. This empirical study is based on an unbalanced panel of 45 countries over the period of 1982–2007. The paper’s contribution to the literature is distinguishing between the causes of violent and nonviolent uprisings. The analysis shows that that certain variables have a significant impact on both violent and nonviolent uprisings in terms of relative SUCI values, for example, ethnic fractionalization and mountainous terrain. Nevertheless, differences between the causes of violent and nonviolent uprisings can be found. For example, life dissatisfaction is related to nonviolent social uprisings, but when life dissatisfaction is accompanied by democratic dissatisfaction, violent social uprisings are more likely.

Keywords: social uprisings, relative deprivation, dissatisfaction, mobilization, anti-government movements, causes

Procedia PDF Downloads 223
3693 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 475
3692 Enhancing Coping Strategies of Student: A Case Study of 'Choice Theory' Group Counseling

Authors: Warakorn Supwirapakorn

Abstract:

The purpose of this research was to study the effects of choice theory in group counseling on coping strategies of students. The sample consisted of 16 students at a boarding school, who had the lowest score on the coping strategies. The sample was divided into two groups by random assignment and then were assigned into the experimental group and the control group, with eight members each. The instruments were the Adolescent Coping Scale and choice theory group counseling program. The data collection procedure was divided into three phases: The pre-test, the post-test, and the follow-up. The data were analyzed by repeated measure analysis of variance: One between-subjects and one within-subjects. The results revealed that the interaction between the methods and the duration of the experiment was found statistically significant at 0.05 level. The students in the experimental group demonstrated significantly higher at 0.05 level on coping strategies score in both the post-test and the follow-up than in the pre-test and the control group. No significant difference was found on coping strategies during the post-test phase and the follow-up phase of the experimental group.

Keywords: coping strategies, choice theory, group counseling, boarding school

Procedia PDF Downloads 212
3691 Investigations of Effective Marketing Metric Strategies: The Case of St. George Brewery Factory, Ethiopia

Authors: Mekdes Getu Chekol, Biniam Tedros Kahsay, Rahwa Berihu Haile

Abstract:

The main objective of this study is to investigate the marketing strategy practice in the Case of St. George Brewery Factory in Addis Ababa. One of the core activities in a Business Company to stay in business is having a well-developed marketing strategy. It assessed how the marketing strategies were practiced in the company to achieve its goals aligned with segmentation, target market, positioning, and the marketing mix elements to satisfy customer requirements. Using primary and secondary data, the study is conducted by using both qualitative and quantitative approaches. The primary data was collected through open and closed-ended questionnaires. Considering the size of the population is small, the selection of the respondents was carried out by using a census. The finding shows that the company used all the 4 Ps of the marketing mix elements in its marketing strategies and provided quality products at affordable prices by promoting its products by using high and effective advertising mechanisms. The product availability and accessibility are admirable with the practices of both direct and indirect distribution channels. On the other hand, the company has identified its target customers, and the company’s market segmentation practice is geographical location. Communication effectiveness between the marketing department and other departments is very good. The adjusted R2 model explains 61.6% of the marketing strategy practice variance by product, price, promotion, and place. The remaining 38.4% of variation in the dependent variable was explained by other factors not included in this study. The result reveals that all four independent variables, product, price, promotion, and place, have a positive beta sign, proving that predictor variables have a positive effect on that of the predicting dependent variable marketing strategy practice. Even though the marketing strategies of the company are effectively practiced, there are some problems that the company faces while implementing them. These are infrastructure problems, economic problems, intensive competition in the market, shortage of raw materials, seasonality of consumption, socio-cultural problems, and the time and cost of awareness creation for the customers. Finally, the authors suggest that the company better develop a long-range view and try to implement a more structured approach to attain information about potential customers, competitor’s actions, and market intelligence within the industry. In addition, we recommend conducting the study by increasing the sample size and including different marketing factors.

Keywords: marketing strategy, market segmentation, target marketing, market positioning, marketing mix

Procedia PDF Downloads 56
3690 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 227
3689 Methodology for the Selection of Chemical Textile Products

Authors: Oscar F. Toro, Alexia Pardo Figueroa, Brigitte M. Larico

Abstract:

The development of new processes in the textile industry entails designing methodologies to select adequate supplies that fit these new processes requirements. This paper presents a methodology to select chemicals that fulfill a new process technical specifications. The proposed methodology involves three major phases: (1) Data collection of chemical products, (2) Qualitative pre-selection and (3) Laboratory tests. We have applied this methodology to the selection of a binder which will form a protective film above the textile fibers and bond them. Our findings were that, there exist five possible products that can be used in our new process: Arkofil, Elvanol, Size plus A, Size plus AC and Starch. This new methodology has both qualitative and experimental variables, and can be used to select supplies for new textile processes.

Keywords: binder, chemical products, selection methodology, textile supplies, textile fiber

Procedia PDF Downloads 293
3688 Machine Learning Assisted Performance Optimization in Memory Tiering

Authors: Derssie Mebratu

Abstract:

As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.

Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM

Procedia PDF Downloads 94
3687 The Effectiveness of Communication Skills Using Transactional Analysis on the Dimensions of Marital Intimacy: An Experimental Study

Authors: Mehravar Javid, James Sexton, S. Taridashti, Joseph Dorer

Abstract:

Objective: Intimacy is among the most important factors in marital relationships and includes different aspects. Communication skills can enable couples to promote their intimacy. This experimental study was conducted to measure the effectiveness of communication skills using Transactional Analysis (TA) on various dimensions of marital intimacy. Method: The participants in this study were female teachers. Analysis of covariance was recruited in the experimental group (n =15) and control group (n =15) with pre-test and post-test. Random assignment was applied. The experimental group received the Transactional Analysis training program for 9 sessions of 2 hours each week. The instrument was the Marital Intimacy Questionnaire, with 87 items and 9 subscales. Result: The findings suggest that training in Transactional Analysis significantly increased the total score of intimacy except spiritual intimacy on the post-test. Discussion: According to the obtained data, it is concluded that communication skills using Transactional Analysis (TA) training could increase intimacy and improve marital relationships. The study highlights the differential effects on emotional, rational, sexual, and psychological intimacy compared to physical, social/recreational, and relational intimacy over a 9-week period.

Keywords: communication skills, intimacy, marital relationships, transactional analysis

Procedia PDF Downloads 94
3686 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 352
3685 The Relationship Between Inspirational Leadership Style and Perceived Social Capital by Mediation of the Development of Organizational Knowledge Resources

Authors: Farhad Shafiepour Motlagh, Narges Salehi

Abstract:

The aim of the present study was to investigate the relationship between inspirational leadership style and perceived social capital through the mediation of organizational knowledge resource development. The research method was descriptive-correlational. The statistical population consisted of all 3537 secondary school teachers in Isfahan. Sample selection was based on Cochran's formula volume formula for 338 people and multi-stage random sampling. The research instruments included a researcher-made inspirational leadership style questionnaire, a perceived social capital questionnaire (Putnam, 1999), and a researcher-made questionnaire of perceived organizational knowledge resources. Kolmogorov statistical tests, Pearson correlation, stepwise multiple regression, and structural equation modeling were used to analyze the data. In general, the results showed that there is a significant relationship between inspirational leadership style and the use of perceived social capital at the level of P <0.05. Also, the development of organizational knowledge resources mediates the relationship between inspirational leadership style and the use of perceived social capital at the level of P <0.05.

Keywords: inspirational leadership style, perceived social capital, perceived organizational knowledge

Procedia PDF Downloads 205
3684 Examining the Investment Behavior of Arab Women in the Stock Market

Authors: Razan Salem

Abstract:

Gender plays a vital role in the stock markets because men and women differ in their behavior when investing in stocks. Accordingly, the role of gender differences in investment behavior is an increasingly important strand in the field of behavioral finance research. The investment behaviors of women relative to men have been examined in the behavioral finance literature, mainly for comparison purposes. Women's roles in the stock market have not been examined in the behavioral finance literature, however, particularly with respect to the Arab region. This study aims to contribute towards a better understanding of the investment behavior of Arab women (in regards to their risk tolerance, investment confidence, and investment literacy levels) relative to Arab men; using a sample from Arab women and men investors living in Saudi Arabia and Jordan. In order to achieve the study's main aim, the researcher used non-parametric tests, as Mann-Whitney U test, along with frequency distribution analysis to analyze the study’s primary data. The researcher distributed close-ended online questionnaires to a sample of 550 Arab male and female individuals investing in stocks in both Saudi Arabia and Jordan. The results confirm that the sample Arab women invest less in stocks compared to Arab men due to their risk-averse behaviors and limited confidence levels. The results also reveal that due to Arab women’s very low investment literacy levels, they fear from taking the risk and invest often in stocks relative to Arab men. Overall, the study’s main variables (risk tolerance, investment confidence, and investment literacy levels) have a combined effect on the investment behavior of Arab women and their limited participation in the stock market. Hence, this study is one of the very first studies that indicate the combined effect of the three main variables (which are usually studied separately in the existing literature) on the investment behavior of women, particularly Arab women. This study makes three important contributions to the growing literature on gender differences in investment behavior. First, while the behavioral finance literature documents evidence on gender differences in investment behaviors in many developed countries, there are very limited studies that investigate such differences in Arab countries. Arab women investors, generally, are ignored from the behavioral finance literature due probably to cultural barriers and data collection difficulties. Thus, this study extends the literature to include Arab women and their investment behaviors when trading stock relative to Arab men. Moreover, the study associates women investment literacy and confidence levels with their financial risk behaviors and participation in the stock market. This study provides direct evidence on Arab women's investment behaviors when trading stocks. Overall, studying Arab women investors is important to investigate whether the investment behavior identified for Western women investors are also found in Arab women investors.

Keywords: Arab women, gender differences, investment behavior, stock markets

Procedia PDF Downloads 178
3683 Time of Death Determination in Medicolegal Death Investigations

Authors: Michelle Rippy

Abstract:

Medicolegal death investigation historically is a field that does not receive much research attention or advancement, as all of the subjects are deceased. Public health threats, drug epidemics and contagious diseases are typically recognized in decedents first, with thorough and accurate death investigations able to assist in epidemiology research and prevention programs. One vital component of medicolegal death investigation is determining the decedent’s time of death. An accurate time of death can assist in corroborating alibies, determining sequence of death in multiple casualty circumstances and provide vital facts in civil situations. Popular television portrays an unrealistic forensic ability to provide the exact time of death to the minute for someone found deceased with no witnesses present. The actuality of unattended decedent time of death determination can generally only be narrowed to a 4-6 hour window. In the mid- to late-20th century, liver temperatures were an invasive action taken by death investigators to determine the decedent’s core temperature. The core temperature was programmed into an equation to determine an approximate time of death. Due to many inconsistencies with the placement of the thermometer and other variables, the accuracy of the liver temperatures was dispelled and this once common place action lost scientific support. Currently, medicolegal death investigators utilize three major after death or post-mortem changes at a death scene. Many factors are considered in the subjective determination as to the time of death, including the cooling of the decedent, stiffness of the muscles, release of blood internally, clothing, ambient temperature, disease and recent exercise. Current research is utilizing non-invasive hospital grade tympanic thermometers to measure the temperature in the each of the decedent’s ears. This tool can be used at the scene and in conjunction with scene indicators may provide a more accurate time of death. The research is significant and important to investigations and can provide an area of accuracy to a historically inaccurate area, considerably improving criminal and civil death investigations. The goal of the research is to provide a scientific basis to unwitnessed deaths, instead of the art that the determination currently is. The research is currently in progress with expected termination in December 2018. There are currently 15 completed case studies with vital information including the ambient temperature, decedent height/weight/sex/age, layers of clothing, found position, if medical intervention occurred and if the death was witnessed. This data will be analyzed with the multiple variables studied and available for presentation in January 2019.

Keywords: algor mortis, forensic pathology, investigations, medicolegal, time of death, tympanic

Procedia PDF Downloads 118
3682 The Effect of Information Technology on the Quality of Accounting Information

Authors: Mohammad Hadi Khorashadi Zadeh, Amin Karkon, Hamid Golnari

Abstract:

This study aimed to investigate the impact of information technology on the quality of accounting information was made in 2014. A survey of 425 executives of listed companies in Tehran Stock Exchange, using the Cochran formula simple random sampling method, 84 managers of these companies as the sample size was considered. Methods of data collection based on questionnaire information technology some of the questions of the impact of information technology was standardized questionnaires and the questions were designed according to existing components. After the distribution and collection of questionnaires, data analysis and hypothesis testing using structural equation modeling Smart PLS2 and software measurement model and the structure was conducted in two parts. In the first part of the questionnaire technical characteristics including reliability, validity, convergent and divergent validity for PLS has been checked and in the second part, application no significant coefficients were used to examine the research hypotheses. The results showed that IT and its dimensions (timeliness, relevance, accuracy, adequacy, and the actual transfer rate) affect the quality of accounting information of listed companies in Tehran Stock Exchange influence.

Keywords: information technology, information quality, accounting, transfer speed

Procedia PDF Downloads 276
3681 A Cognitive Semantic Analysis of the Metaphorical Extensions of Come out and Take Over

Authors: Raquel Rossini, Edelvais Caldeira

Abstract:

The aim of this work is to investigate the motivation for the metaphorical uses of two verb combinations: come out and take over. Drawing from cognitive semantics theories, image schemas and metaphors, it was attempted to demonstrate that: a) the metaphorical senses of both 'come out' and 'take over' extend from both the verbs and the particles central (spatial) senses in such verb combinations; and b) the particles 'out' and 'over' also contribute to the whole meaning of the verb combinations. In order to do so, a random selection of 579 concordance lines for come out and 1,412 for take over was obtained from the Corpus of Contemporary American English – COCA. One of the main procedures adopted in the present work was the establishment of verb and particle central senses. As per the research questions addressed in this study, they are as follows: a) how does the identification of trajector and landmark help reveal patterns that contribute for the identification of the semantic network of these two verb combinations?; b) what is the relationship between the schematic structures attributed to the particles and the metaphorical uses found in empirical data?; and c) what conceptual metaphors underlie the mappings from the source to the target domains? The results demonstrated that not only the lexical verbs come and take, but also the particles out and over play an important whole in the different meanings of come out and take over. Besides, image schemas and conceptual metaphors were found to be helpful in order to establish the motivations for the metaphorical uses of these linguistic structures.

Keywords: cognitive linguistics, English syntax, multi-word verbs, prepositions

Procedia PDF Downloads 154
3680 Visitors’ Attitude towards the Service Marketing Mix and Frequency of Visits to Bangpu Recreation Centre, Thailand

Authors: Siri-Orn Champatong

Abstract:

This research paper was aimed to examine the relationship between visitors’ attitude towards the service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre. Based on a large and uncalculated population, the number of samples was calculated according to the formula to obtain a total of 385 samples. In collecting the samples, systematic random sampling was applied and by using of a Likert five-scale questionnaire for, a total of 21 days to collect the needed information. Mean, Standard Deviation, and Pearson’s basic statistical correlations were utilized in analyzing the data. This study discovered a high level of visitors’ attitude product and service of Bangpu Recreation Centre, price, place, promotional activities, people who provided service and physical evidence of the centre. The attitude towards process of service was discovered to be at a medium level. Additionally, the finding of an examination of a relationship between visitors’ attitude towards service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre presented that product and service, people, physical evidence and process of service provision showed a relationship with the visitors’ frequency of visit to the centre per year.

Keywords: frequency of visit, visitor, service marketing mix, Bangpu Recreation Centre

Procedia PDF Downloads 368
3679 How Consumers Perceive Health and Nutritional Information and How It Affects Their Purchasing Behavior: Comparative Study between Colombia and the Dominican Republic

Authors: Daniel Herrera Gonzalez, Maria Luisa Montas

Abstract:

There are some factors affecting consumer decision-making regarding the use of the front of package labels in order to find benefits to the well-being of the human being. Currently, there are several labels that help influence or change the purchase decision for food products. These labels communicate the impact that food has on human health; therefore, consumers are more critical and intelligent when buying and consuming food products. The research explores the association between front-of-pack labeling and food choice; the association between label content and purchasing decisions is complex and influenced by different factors, including the packaging itself. The main objective of this study was to examine the perception of health labels and nutritional declarations and their influence on buying decisions in the non-alcoholic beverages sector. This comparative study of two developing countries will show how consumers take nutritional labels into account when deciding to buy certain foods. This research applied a quantitative methodology with correlational scope. This study has a correlational approach in order to analyze the degree of association between variables. Likewise, the confirmatory factor analysis (CFA) method and structural equation modeling (SEM) as a powerful multivariate technique was used as statistical technique to find the relationships between observable and unobservable variables. The main findings of this research were the obtaining of three large groups and their perception and effects on nutritional and wellness labels. The first group is characterized by taking an attitude of high interest on the issue of the imposition of the nutritional information label on products and would agree that all products should be packaged given its importance to preventing illnesses in the consumer. Likewise, they almost always care about the brand, the size, the list of ingredients, and nutritional information of the food, and also the effect of these on health. The second group stands out for presenting some interest in the importance of the label on products as a purchase decision, in addition to almost always taking into account the characteristics of size, money, components, etc. of the products to decide on their consumption and almost always They are never interested in the effect of these products on their health or nutrition, and in group 3, it differs from the others by being more neutral regarding the issue of nutritional information labels, and being less interested in the purchase decision and characteristics of the product and also on the influence of these on health and nutrition. This new knowledge is essential for different companies that manufacture and market food products because they will have information to adapt or anticipate the new laws of developing countries as well as the new needs of health-conscious consumers when they buy food products.

Keywords: healthy labels, consumer behavior, nutritional information, healthy products

Procedia PDF Downloads 107
3678 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 72
3677 Investigation of Various Variabilities of Social Anxiety Levels of Physical Education and Sports School Students

Authors: Turan Cetinkaya

Abstract:

The aim of this study is to determine the relation of the level of social anxiety to various variables of the students in physical education and sports departments. 229 students who are studying at the departments of physical education and sports teaching, sports management and coaching in Ahi Evran University, College of Physical Education and Sports participate in the research. Personal information tool and social anxiety scale consisting 30 items were used as data collection tool in the research. Distribution, frequency, t-test and ANOVA test were used in the comparison of the related data. As a result of statistical analysis, social anxiety levels do not differ according to gender, income level, sports type and national player status.

Keywords: social anxiety, undergraduates, sport, unıversty

Procedia PDF Downloads 428
3676 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 405
3675 Factors Affecting Profitability of Pharmaceutical Company During the COVID-19 Pandemic: An Indonesian Evidence

Authors: Septiany Trisnaningtyas

Abstract:

Purpose: This research aims to examine the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia. A sharp decline in the number of patients coming to the hospital for treatment during the pandemic has an impact on the growth of the pharmaceutical sector and brought major changes in financial position and business performance. Pharmaceutical companies that provide products related to the Covid-19 pandemic can survive and continue to grow. This study investigates the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia associated with the number of Covid-19 cases. Design/methodology/approach: This study uses panel-data regression models to evaluate the influence of the number of Covid-19 confirmed cases on profitability of ninelisted pharmaceuticalcompanies in Indonesia. This research is based on four independent variables that were empirically examined for their relationship with profitability. These variables are liquidity (current ratio), growth rate (sales growth), firm size (total sales), and market power (the Lerner index). Covid-19 case is used as moderating variable. Data of nine pharmaceutical companies listed on the Indonesia Stock Exchange covering the period of 2018–2021 were extracted from companies’ quarterly annual reports. Findings: In the period during Covid-19, company growth (sales growth) and market power (lerner index) have a positive and significant relationship to ROA and ROE. Total of confirmed Covid-19 cases has a positive and significant relationship to ROA and is proven to have a moderating effect between company’s growth (sales growth) to ROA and ROE and market power (Lerner index) to ROA. Research limitations/implications: Due to data availability, this study only includes data from nine listed pharmaceutical companies in Indonesian Stock exchange and quarterly annual reportscovering the period of 2018-2021. Originality/value: This study focuses onpharmaceutical companies in Indonesia during Covid-19 pandemic. Previous study analyzes the data from pharmaceutical companies’ annual reports since 2014 and focus on universal health coverage (national health insurance) implementation from the Indonesian government. This study analyzes the data using fixed effect panel-data regression models to evaluate the influence of Covid-19 confirmed cases on profitability. Pooled ordinary least squares regression and fixed effects were used to analyze the data in previous study. This study also investigate the moderating effect of Covid-19 confirmed cases to profitability in relevant with the pandemic situation.

Keywords: profitability, indonesia, pharmaceutical, Covid-19

Procedia PDF Downloads 122
3674 Prevalence of Metabolic Syndrome According to Different Criteria in Population over 20 Years Old in Ahvaz

Authors: Armaghan Moravej Aleali, Hajieh Shahbazian, Seyed Mahmoud Latifi, Leila Yazdanpanah

Abstract:

Objective: Metabolic syndrome or insulin resistance syndrome or syndrome X is a collection of abdominal obesity, hypertension, glucose intolerance and lipid abnormalities (elevated triglycerides, elevated LDL, and decrease the amount of HDL). That increases the incidence of diabetes and risk of cardiovascular disease. The aim of this study is to investigate the prevalence of metabolic syndrome in people over 20 years of Ahvaz according to IDF, ATPIII, Harmonized I and Harmonized II. Material & Methods: A cross-sectional study with a random cluster sampling in six health centers in Ahvaz was done. After obtaining informed consent, questionnaire for each person filled up including demographic data and examinations, including blood pressure in sitting position, weight, height, waist circumference, and waist circumference measurement. Results: From all participating 912 people, (434 (2/47%) male and 478 (2/52%) female) were evaluated. Mean age was 42/27± 14years (44/2±14/26 for male and 40/5±13/5 for female). Prevalence of metabolic syndrome was 22/8%, 28/4%, 30/9% and 16/9% according to ATPIII, IDF, Harmonized I and Harmonized II criteria respectively and increased with age in both sexes. IDF and Harmonized I had most kappa coordination (0/94). Conclusion: The results show a high prevalence of metabolic syndrome in Ahvaz. So, identification of the risk factors should be attempted to prevent metabolic syndrome.

Keywords: metabolic syndrome, IDF, ATP III, prevalence

Procedia PDF Downloads 579
3673 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 93
3672 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 463