Search results for: fuel rich
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2998

Search results for: fuel rich

448 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 10
447 Dynamic Analysis of Commodity Price Fluctuation and Fiscal Management in Sub-Saharan Africa

Authors: Abidemi C. Adegboye, Nosakhare Ikponmwosa, Rogers A. Akinsokeji

Abstract:

For many resource-rich developing countries, fiscal policy has become a key tool used for short-run fiscal management since it is considered as playing a critical role in injecting part of resource rents into the economies. However, given its instability, reliance on revenue from commodity exports renders fiscal management, budgetary planning and the efficient use of public resources difficult. In this study, the linkage between commodity prices and fiscal operations among a sample of commodity-exporting countries in sub-Saharan Africa (SSA) is investigated. The main question is whether commodity price fluctuations affects the effectiveness of fiscal policy as a macroeconomic stabilization tool in these countries. Fiscal management effectiveness is considered as the ability of fiscal policy to react countercyclically to output gaps in the economy. Fiscal policy is measured as the ratio of fiscal deficit to GDP and the ratio of government spending to GDP, output gap is measured as a Hodrick-Prescott filter of output growth for each country, while commodity prices are associated with each country based on its main export commodity. Given the dynamic nature of fiscal policy effects on the economy overtime, a dynamic framework is devised for the empirical analysis. The panel cointegration and error correction methodology is used to explain the relationships. In particular, the study employs the panel ECM technique to trace short-term effects of commodity prices on fiscal management and also uses the fully modified OLS (FMOLS) technique to determine the long run relationships. These procedures provide sufficient estimation of the dynamic effects of commodity prices on fiscal policy. Data used cover the period 1992 to 2016 for 11 SSA countries. The study finds that the elasticity of the fiscal policy measures with respect to the output gap is significant and positive, suggesting that fiscal policy is actually procyclical among the countries in the sample. This implies that fiscal management for these countries follows the trend of economic performance. Moreover, it is found that fiscal policy has not performed well in delivering macroeconomic stabilization for these countries. The difficulty in applying fiscal stabilization measures is attributable to the unstable revenue inflows due to the highly volatile nature of commodity prices in the international market. For commodity-exporting countries in SSA to improve fiscal management, therefore, fiscal planning should be largely decoupled from commodity revenues, domestic revenue bases must be improved, and longer period perspectives in fiscal policy management are the critical suggestions in this study.

Keywords: commodity prices, ECM, fiscal policy, fiscal procyclicality, fully modified OLS, sub-saharan africa

Procedia PDF Downloads 151
446 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 43
445 Unveiling the Linguistic Pathways to Environmental Consciousness: An Eco Linguistic Study in the Algerian

Authors: Toumi Khamari

Abstract:

This abstract presents an ecolinguistic investigation of the role of language in cultivating environmental consciousness within the Algerian context. Grounded in the field of applied linguistics, this study aims to explore how language shapes perceptions, attitudes, and behaviors related to the environment in Algeria. By examining linguistic practices and discourse patterns, this research sheds light on the potential for language to inspire ecological sustainability and foster environmental awareness. Employing a qualitative research design, the study incorporates discourse analysis and ethnographic methods to analyze language use and its environmental implications. Drawing from Algerian linguistic and cultural contexts, we investigate the unique ways in which language reflects and influences environmental consciousness among Algerian individuals and communities. This research explores the impact of linguistic features, metaphors, and narratives on environmental perceptions, addressing the complex interplay between language, culture, and the natural world. Previous studies have emphasized the significance of language in shaping environmental ideologies and worldviews. In the Algerian context, linguistic representations of nature, such as traditional proverbs and indigenous knowledge, hold immense potential in cultivating a harmonious relationship between humans and the environment. This research delves into the multifaceted connections between language, cultural heritage, and ecological sustainability, aiming to identify linguistic practices that promote environmental stewardship and conservation in Algeria. Furthermore, the study investigates the effectiveness of ecolinguistic interventions tailored to the Algerian context. By examining the impact of eco-education programs, eco-literature, and language-based environmental campaigns, we aim to uncover the potential of language as a catalyst for transformative environmental change. These interventions seek to engage Algerian individuals and communities in dialogue, empowering them to take active roles in environmental advocacy and decision-making processes. Through this research, we contribute to the field of ecolinguistics by shedding light on the Algerian perspective and its implications for environmental consciousness. By understanding the linguistic dynamics at play and leveraging Algeria's rich linguistic heritage, we can foster environmental awareness, encourage sustainable practices, and nurture a deeper appreciation for Algeria's unique ecological landscapes. Ultimately, this research seeks to inspire a collective commitment to environmental stewardship and contribute to the global discourse on language, culture, and the environment.

Keywords: eco-linguistics, environmental consciousness, language and culture, Algeria and North Africa

Procedia PDF Downloads 67
444 The Effect of Filter Design and Face Velocity on Air Filter Performance

Authors: Iyad Al-Attar

Abstract:

Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.

Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop

Procedia PDF Downloads 128
443 A Systematic Map of the Research Trends in Wildfire Management in Mediterranean-Climate Regions

Authors: Renata Martins Pacheco, João Claro

Abstract:

Wildfires are becoming an increasing concern worldwide, causing substantial social, economic, and environmental disruptions. This situation is especially relevant in Mediterranean-climate regions, present in all the five continents of the world, in which fire is not only a natural component of the environment but also perhaps one of the most important evolutionary forces. The rise in wildfire occurrences and their associated impacts suggests the need for identifying knowledge gaps and enhancing the basis of scientific evidence on how managers and policymakers may act effectively to address them. Considering that the main goal of a systematic map is to collate and catalog a body of evidence to describe the state of knowledge for a specific topic, it is a suitable approach to be used for this purpose. In this context, the aim of this study is to systematically map the research trends in wildfire management practices in Mediterranean-climate regions. A total of 201 wildfire management studies were analyzed and systematically mapped in terms of their: Year of publication; Place of study; Scientific outlet; Research area (Web of Science) or Research field (Scopus); Wildfire phase; Central research topic; Main objective of the study; Research methods; and Main conclusions or contributions. The results indicate that there is an increasing number of studies being developed on the topic (most from the last 10 years), but more than half of them are conducted in few Mediterranean countries (60% of the analyzed studies were conducted in Spain, Portugal, Greece, Italy or France), and more than 50% are focused on pre-fire issues, such as prevention and fuel management. In contrast, only 12% of the studies focused on “Economic modeling” or “Human factors and issues,” which suggests that the triple bottom line of the sustainability argument (social, environmental, and economic) is not being fully addressed by fire management research. More than one-fourth of the studies had their objective related to testing new approaches in fire or forest management, suggesting that new knowledge is being produced on the field. Nevertheless, the results indicate that most studies (about 84%) employed quantitative research methods, and only 3% of the studies used research methods that tackled social issues or addressed expert and practitioner’s knowledge. Perhaps this lack of multidisciplinary studies is one of the factors hindering more progress from being made in terms of reducing wildfire occurrences and their impacts.

Keywords: wildfire, Mediterranean-climate regions, management, policy

Procedia PDF Downloads 115
442 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes

Authors: Tasleem Zafar, Jiwan Sidhu

Abstract:

Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.

Keywords: wheat flour, chickpea flour, amla fruit, rheology

Procedia PDF Downloads 145
441 Architecture for Hearing Impaired: A Study on Conducive Learning Environments for Deaf Children with Reference to Sri Lanka

Authors: Champa Gunawardana, Anishka Hettiarachchi

Abstract:

Conducive Architecture for learning environments is an area of interest for many scholars around the world. Loss of sense of hearing leads to the assumption that deaf students are visual learners. Comprehending favorable non-hearing attributes of architecture can lead to effective, rich and friendly learning environments for hearing impaired. The objective of the current qualitative investigation is to explore the nature and parameters of a sense of place of deaf children to support optimal learning. The investigation was conducted with hearing-impaired children (age: between 8-19, Gender: 15 male and 15 female) of Yashodhara deaf and blind school at Balangoda, Sri Lanka. A sensory ethnography study was adopted to identify the nature of perception and the parameters of most preferred and least preferred spaces of the learning environment. The common perceptions behind most preferred places in the learning environment were found as being calm and quiet, sense of freedom, volumes characterized by openness and spaciousness, sense of safety, wide spaces, privacy and belongingness, less crowded, undisturbed, availability of natural light and ventilation, sense of comfort and the view of green colour in the surroundings. On the other hand, the least preferred spaces were found to be perceived as dark, gloomy, warm, crowded, lack of freedom, smells (bad), unsafe and having glare. Perception of space by deaf considering the hierarchy of sensory modalities involved was identified as; light - color perception (34 %), sight - visual perception (32%), touch - haptic perception (26%), smell - olfactory perception (7%) and sound – auditory perception (1%) respectively. Sense of freedom (32%) and sense of comfort (23%) were the predominant psychological parameters leading to an optimal sense of place perceived by hearing impaired. Privacy (16%), rhythm (14%), belonging (9%) and safety (6%) were found as secondary factors. Open and wide flowing spaces without visual barriers, transparent doors and windows or open port holes to ease their communication, comfortable volumes, naturally ventilated spaces, natural lighting or diffused artificial lighting conditions without glare, sloping walkways, wider stairways, walkways and corridors with ample distance for signing were identified as positive characteristics of the learning environment investigated.

Keywords: deaf, visual learning environment, perception, sensory ethnography

Procedia PDF Downloads 221
440 Children and Communities Benefit from Mother-Tongue Based Multi-Lingual Education

Authors: Binay Pattanayak

Abstract:

Multilingual state, Jharkhand is home to more than 19 tribal and regional languages. These are used by more than 33 communities in the state. The state has declared 12 of these languages as official languages of the state. However, schools in the state do not recognize any of these community languages even in early grades! Children, who speak in their mother tongues at home, local market and playground, find it very difficult to understand their teacher and textbooks in school. They fail to acquire basic literacy and numeracy skills in early grades. Out of frustration due to lack of comprehension, the majority of children leave school. Jharkhand sees the highest dropout in early grades in India. To address this, the state under the guidance of the author designed a mother tongue based pre-school education programme named Bhasha Puliya and bilingual picture dictionaries in 9 tribal and regional mother tongues of children. This contributed significantly to children’s school readiness in the school. Followed by this, the state designed a mother-tongue based multilingual education programme (MTB-MLE) for multilingual context. The author guided textbook development in 5 tribal (Santhali, Mundari, Ho, Kurukh and Kharia) and two regional (Odia and Bangla) languages. Teachers and community members were trained for MTB-MLE in around 1,000 schools of the concerned language pockets. Community resource groups were constituted along with their academic calendars in each school to promote story-telling, singing, painting, dancing, riddles, etc. with community support. This, on the one hand, created rich learning environments for children. On the other hand, the communities have discovered a great potential in the process of developing a wide variety of learning materials for children in own mother-tongue using their local stories, songs, riddles, paintings, idioms, skits, etc. as a process of their literary, cultural and technical enrichment. The majority of children are acquiring strong early grade reading skills (basic literacy and numeracy) in grades I-II thereby getting well prepared for higher studies. In a phased manner they are learning Hindi and English after 4-5 years of MTB-MLE using the foundational language learning skills. Community members have started designing new books, audio-visual learning materials in their mother-tongues seeing a great potential for their cultural and technological rejuvenation.

Keywords: community resource groups, MTB-MLE, multilingual, socio-linguistic survey, learning

Procedia PDF Downloads 187
439 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 45
438 Rural Tourism in Indian Himalayan Region: A Scope for Sustainable Livelihood

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The present-day tourism sector is globally developing at a fast pace, searching for new ideas and new venues. In the Indian Himalayan Region (IHR), tourism has experienced a vast growth and continuous diversification over the last few years, thus becoming one of the fastest-growing economic sectors in India. With its majestic landscape, high peaks, rich floral and faunal diversity, and cultural history, the IHR has continuously attracted tourists and pilgrims from across the globe. The IHR has attracted a vast range of visitors who seek adventure sports, natural and spiritual solace, peace, cultural assets, food, and festivals, etc. Thus, the multi-functionality of the region has turned tourism into a key component of economic growth for the rural communities in the hills. For the local mountain people, it means valuable economic opportunity for income generation, and for the government and entrepreneurs, it brings profits. As the urban cities gain attention and investment in India, efforts have to be made to protect, safeguard, and strengthen the cultural, spiritual, and natural heritage of IHR for sustainable livelihood development. Furthermore, the socio-economic and environmental insecurities, along with geographical isolation, adds to the challenging survival in the tough terrains of IHR, creating a major threat of outmigration, land abandonment, and degradation. The question the paper intends to answer is: whether the rural community of IHR is aware of the new global trends in rural tourism and the extent of their willingness to adapt to the evolving tourism industry, which impacts the rural economy, including sustainable livelihood opportunity. The objective of the paper is to discuss the integrated nature of rural tourism, which widely depends upon natural resources, cultural heritage, agriculture/horticulture, infrastructural development, education, social awareness, and willingness of the locals. The sustainable management of all these different rural activities can lead to long-term livelihood development and social upliftment. It highlights some gap areas and recommends fewcommunity-based coping measures which the local people can adopt amidst the disorganized sector of rural tourism. Lastly, the main contribution is the exploratory research of the rural tourism vulnerability in the IHR, which would further help in studying the resilience of the tourism sector in the rural parts of a developing nation.

Keywords: community-based approach, sustainable livelihood development, Indian Himalayan region, rural tourism

Procedia PDF Downloads 132
437 The Integration of Prosecutorial Discretion in the Anti-Money Laundering Regime in Nigeria: A Focus on Politically Exposed Persons

Authors: Chineduum Okpala

Abstract:

Nigeria, since her independence, has been engulfed in financial crimes of different forms. From embezzlement and conversion of public funds by public servants to stealing, contract inflation, and money laundering. Money laundering in Nigeria, particularly by political exposed persons, has been an issue of concern since independence. Corruption has been endemic, and Nigeria needs to integrate pro-active measures to show to the international community that it is ready to move against this vice. This paper discusses the negative effect of corruption and its effect on prosecutorial discretion. It also takes cognisance of the policy and aims of the anti-money laundering (AML) policy as enacted in Nigeria. It also takes as valid the assumption that the effective application of the rule of law will improve the efficacy of the Nigerian regime. In this regard, the perspective is internal to the Nigerian regime and its internal policy discourse which also reflect its policy discourse at international level. This paper takes notice of the typology of money laundering (ML) offences that most affect Nigeria, which hinges on corruption and abuse of office by a specific type of person, politically exposed persons (PEP). This typology of money laundering offence appears to be the most prevalent in developing nations like Nigeria. The application of essential principles of law provides an opportunity for the internalisation of the rule of law in the anti-money laundering regime in Nigeria, which could aid the successful prosecution of politically exposed persons on money laundering offences. The rule of law and how well the Nigerian legal system manages to deal with the interface between high level politics and the criminal justice system in Nigeria cannot be understood from internal sources but must be developed as a genuine but critical account informed by perspectives external to the Nigerian regime. If the efficacy of the regime is to be assessed in view of notorious failures of the regime, an external assessment is needed. Hence the paper discusses the need to integrate the essential principles of law in the application of prosecutorial discretion in the anti-money laundering regime in Nigeria, particularly with politically exposed persons. The paper highlights jurisdiction where prosecutorial discretion is integrated into the anti-money laundering regime in accordance to the rule of law which forms a basis for comparative analysis of the success of the anti-money laundering regime in Nigeria. This paper discusses why the application of prosecutorial discretion should not be used as a tool to extricate or avail the rich and powerful in the society from justice. The paper aims to argue that the successful prosecution of politically exposed persons, will raise the confidence of the citizens and the international community in the anti-money laundering regime in Nigeria.

Keywords: money laundering, politically exposed persons, corruption, Nigeria

Procedia PDF Downloads 116
436 Water Quality in Buyuk Menderes Graben, Turkey

Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi

Abstract:

Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).

Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality

Procedia PDF Downloads 527
435 Children Overcome Learning Disadvantages through Mother-Tongue Based Multi-Lingual Education Programme

Authors: Binay Pattanayak

Abstract:

More than 9 out of every 10 children in Jharkhand struggle to understand the texts and teachers in public schools. The medium of learning in the schools is Hindi, which is very different in structure and vocabulary than those in children’s home languages. Hence around 3 out of 10 children enrolled in early grades drop out in these schools. The state realized the cause of children’s high dropout in 2013-14 when the M-TALL, the language research shared the findings of a state-wide socio-linguistic study. The study findings suggested that there was a great need for initiating a mother-tongue based multilingual education (MTB-MLE) programme for the state in early grades starting from pre-school level. Accordingly, M-TALL in partnership with department of education designed two learning packages: Bhasha Puliya pre-school education programme for 3-6-year-old children for their school readiness with bilingual picture dictionaries in 9 tribal and regional languages. This was followed by a plan for MTB-MLE programme for early primary grades. For this textbooks in five tribal and two regional languages were developed under the guidance of the author. These books were printed and circulated in the 1000 schools of the state for each child. Teachers and community members were trained for facilitating culturally sensitive mother-tongue based learning activities in and around the schools. The mother-tongue based approach of learning has worked very effectively in enabling them to acquire the basic literacy and numeracy skills in own mother-tongues. Using this basic early grade reading skills, these children are able to learn Hindi and English systematically. Community resource groups were constituted in each school for promoting storytelling, singing, painting, dancing, acting, riddles, humor, sanitation, health, nutrition, protection, etc. and were trained. School academic calendar was designed in each school to enable the community resource persons to visit the school as per the learning plan to assist children and teacher in facilitating rich cultural activities in mother-tongue. This enables children to take part in plethora of learning activities and acquire desired knowledge, skills and interest in mother-tongues. Also in this process, it is attempted to promote 21st Century learning skills by enabling children to apply their new knowledge and skills to look at their local issues and address those in a collective manner through team work, innovations and leadership.

Keywords: community resource groups, learning, MTB-MLE, multilingual, socio-linguistic survey

Procedia PDF Downloads 223
434 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 112
433 Governance in the Age of Artificial intelligence and E- Government

Authors: Mernoosh Abouzari, Shahrokh Sahraei

Abstract:

Electronic government is a way for governments to use new technology that provides people with the necessary facilities for proper access to government information and services, improving the quality of services and providing broad opportunities to participate in democratic processes and institutions. That leads to providing the possibility of easy use of information technology in order to distribute government services to the customer without holidays, which increases people's satisfaction and participation in political and economic activities. The expansion of e-government services and its movement towards intelligentization has the ability to re-establish the relationship between the government and citizens and the elements and components of the government. Electronic government is the result of the use of information and communication technology (ICT), which by implementing it at the government level, in terms of the efficiency and effectiveness of government systems and the way of providing services, tremendous commercial changes are created, which brings people's satisfaction at the wide level will follow. The main level of electronic government services has become objectified today with the presence of artificial intelligence systems, which recent advances in artificial intelligence represent a revolution in the use of machines to support predictive decision-making and Classification of data. With the use of deep learning tools, artificial intelligence can mean a significant improvement in the delivery of services to citizens and uplift the work of public service professionals while also inspiring a new generation of technocrats to enter government. This smart revolution may put aside some functions of the government, change its components, and concepts such as governance, policymaking or democracy will change in front of artificial intelligence technology, and the top-down position in governance may face serious changes, and If governments delay in using artificial intelligence, the balance of power will change and private companies will monopolize everything with their pioneering in this field, and the world order will also depend on rich multinational companies and in fact, Algorithmic systems will become the ruling systems of the world. It can be said that currently, the revolution in information technology and biotechnology has been started by engineers, large economic companies, and scientists who are rarely aware of the political complexities of their decisions and certainly do not represent anyone. Therefore, it seems that if liberalism, nationalism, or any other religion wants to organize the world of 2050, it should not only rationalize the concept of artificial intelligence and complex data algorithm but also mix them in a new and meaningful narrative. Therefore, the changes caused by artificial intelligence in the political and economic order will lead to a major change in the way all countries deal with the phenomenon of digital globalization. In this paper, while debating the role and performance of e-government, we will discuss the efficiency and application of artificial intelligence in e-government, and we will consider the developments resulting from it in the new world and the concepts of governance.

Keywords: electronic government, artificial intelligence, information and communication technology., system

Procedia PDF Downloads 83
432 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 510
431 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: carbon capture and storage, oxy-combustion, netpower cycle, oxy turbine cycles, zero emission, heat exchanger design, supercritical carbon dioxide, oxy-fuel power plant, pinch point analysis

Procedia PDF Downloads 194
430 Empowering Youth Through Pesh Poultry: A Transformative Approach to Addressing Unemployment and Fostering Sustainable Livelihoods in Busia District, Uganda

Authors: Bisemiire Anthony,

Abstract:

PESH Poultry is a business project proposed specifically to solve unemployment and income-related problems affecting the youths in the Busia district. The project is intended to transform the life of the youth in terms of economic, social and behavioral, as well as the domestic well-being of the community at large. PESH Poultry is a start-up poultry farm that will be engaged in the keeping of poultry birds, broilers and layers for the production of quality and affordable poultry meat and eggs respectively and other poultry derivatives targeting consumers in eastern Uganda, for example, hotels, restaurants, households and bakeries. We intend to use a semi-intensive system of farming, where water and some food are provided in a separate nighttime shelter for the birds; our location will be in Lumino, Busia district. The poultry project will be established and owned by Bisemiire Anthony, Nandera Patience, Naula Justine, Bwire Benjamin and other investors. The farm will be managed and directed by Nandera Patience, who has five years of work experience and business administration knowledge. We will sell poultry products, including poultry eggs, chicken meat, feathers and poultry manure. We also offer consultancy services for poultry farming. Our eggs and chicken meat are hygienic, rich in protein and high quality. We produce processes and packages to meet the standard organization of Uganda and international standards. The business project shall comprise five (5) workers on the key management team who will share various roles and responsibilities in the identified business functions such as marketing, finance and other related poultry farming activities. PESH Poultry seeks 30 million Ugandan shillings in long-term financing to cover start-up costs, equipment, building expenses and working capital. Funding for the launch of the business will be provided primarily by equity from the investors. The business will reach positive cash flow in its first year of operation, allowing for the expected repayment of its loan obligations. Revenue will top UGX 11,750,000, and net income will reach about UGX115 950,000 in the 1st year of operation. The payback period for our project is 2 years and 3 months. The farm plans on starting with 1000 layer birds and 1000 broiler birds, 20 workers in the first year of operation.

Keywords: chicken, pullets, turkey, ducks

Procedia PDF Downloads 74
429 An Impregnated Active Layer Mode of Solution Combustion Synthesis as a Tool for the Solution Combustion Mechanism Investigation

Authors: Zhanna Yermekova, Sergey Roslyakov

Abstract:

Solution combustion synthesis (SCS) is the unique method which multiple times has proved itself as an effective and efficient approach for the versatile synthesis of a variety of materials. It has significant advantages such as relatively simple handling process, high rates of product synthesis, mixing of the precursors on a molecular level, and fabrication of the nanoproducts as a result. Nowadays, an overwhelming majority of solution combustion investigations performed through the volume combustion synthesis (VCS) where the entire liquid precursor is heated until the combustion self-initiates throughout the volume. Less amount of the experiments devoted to the steady-state self-propagating mode of SCS. Under the beforementioned regime, the precursor solution is dried until the gel-like media, and later on, the gel substance is locally ignited. In such a case, a combustion wave propagates in a self-sustaining mode as in conventional solid combustion synthesis. Even less attention is given to the impregnated active layer (IAL) mode of solution combustion. An IAL approach to the synthesis is implying that the solution combustion of the precursors should be initiated on the surface of the third chemical or inside the third substance. This work is aiming to emphasize an underestimated role of the impregnated active layer mode of the solution combustion synthesis for the fundamental studies of the combustion mechanisms. It also serves the purpose of popularizing the technical terms and clarifying the difference between them. In order to do so, the solution combustion synthesis of γ-FeNi (PDF#47-1417) alloy has been accomplished within short (seconds) one-step reaction of metal precursors with hexamethylenetetramine (HTMA) fuel. An idea of the special role of the Ni in a process of alloy formation was suggested and confirmed with the particularly organized set of experiments. The first set of experiments were conducted in a conventional steady-state self-propagating mode of SCS. An alloy was synthesized as a single monophasic product. In two other experiments, the synthesis was divided into two independent processes which are possible under the IAL mode of solution combustion. The sequence of the process was changed according to the equations which are describing an Experiment A and B below: Experiment A: Step 1. Fe(NO₃)₃*9H₂O + HMTA = FeO + gas products; Step 2. FeO + Ni(NO₃)₂*6H₂O + HMTA = Ni + FeO + gas products; Experiment B: Step 1. Ni(NO₃)₂*6H₂O + HMTA = Ni + gas products; Step 2. Ni + Fe(NO₃)₃*9H₂O + HMTA = Fe₃Ni₂+ traces (Ni + FeO). Based on the IAL experiment results, one can see that combustion of the Fe(NO₃)₃9H₂O on the surface of the Ni is leading to the alloy formation while presence of the already formed FeO does not affect the Ni(NO₃)₂*6H₂O + HMTA reaction in any way and Ni is the main product of the synthesis.

Keywords: alloy, hexamethylenetetramine, impregnated active layer mode, mechanism, solution combustion synthesis

Procedia PDF Downloads 125
428 Rheological and Sensory Attributes of Dough and Crackers Including Amaranth Flour (Amaranthus spp.)

Authors: Claudia Cabezas-Zabala, Jairo Lindarte-Artunduaga, Carlos Mario Zuluaga-Dominguez

Abstract:

Amaranth is an emerging pseudocereal rich in such essential nutrients as protein and dietary fiber, which was employed as an ingredient in the formulation of crackers to evaluate the rheological performance and sensory acceptability of the obtained food. A completely randomized factorial design was used with two factors: (A) ratio of wheat and amaranth flour used in the preparation of the dough, in proportion 90:10 and 80:20 (% w/w) and (B) two levels of inulin addition of 8.4% and 16.7 %, having two control doughs made from amaranth and wheat flour, respectively. Initially, the functional properties of the formulations mentioned were measured, showing no significant differences in the water absorption capacity (WAC) and swelling power (SP), having mean values between 1.66 and 1.81 g/g for WAC and between 1.75 and 1.86 g/g for SP, respectively. The amaranth flour had the highest water holding capacity (WHR) of 8.41 ± 0.15 g/g and emulsifying activity (EA) of 74.63 ± 1.89 g/g. Moreover, the rheological behavior, measured through the use of farinograph, extensograph, Mixolab, and falling index, showed that the formulation containing 20% of amaranth flour and 7.16% of inulin had a rheological behavior similar to the control produced exclusively with wheat flour, being the former, the one selected for the preparation of crackers. For this formulation, the farinograph showed a mixing tolerance index of 11 UB, indicating a strong and cohesive dough; likewise, the Mixolab showed dough reaches stability at 6.47 min, indicating a good resistance to mixing. On the other hand, the extensograph exhibited a dough resistance of 637 UB, as well as extensibility of 13.4 mm, which corresponds to a strong dough capable of resisting the laminate. Finally, the falling index was 318 s, which indicates the crumb will retain enough air to enhance the crispness of a characteristic cracker. Finally, a sensory consumer test did not show significant differences in the evaluation of aroma between the control and the selected formulation, while this latter had a significantly lower rating in flavor. However, a purchase intention of 70 % was observed among the population surveyed. The results obtained in this work give perspectives for the industrial use of amaranth in baked goods. Additionally, amaranth has been a product typically linked to indigenous populations in the Andean South American countries; therefore, the search for diversification and alternatives of use for this pseudocereal has an impact on the social and economic conditions of such communities. The technological versatility and nutritional quality of amaranth is an advantage for consumers, favoring the consumption of healthy products with important contributions of dietary fiber and protein.

Keywords: amaranth, crackers, rheology, pseudocereals, kneaded products

Procedia PDF Downloads 110
427 Economic and Environmental Assessment of Heat Recovery in Beer and Spirit Production

Authors: Isabel Schestak, Jan Spriet, David Styles, Prysor Williams

Abstract:

Breweries and distilleries are well-known for their high water usage. The water consumption in a UK brewery to produce one litre of beer reportedly ranges from 3-9 L and in a distillery from 7-45 L to produce a litre of spirit. This includes product water such as mashing water, but also water for wort and distillate cooling and for cleaning of tanks, casks, and kegs. When cooling towers are used, cooling water can be the dominating water consumption in a brewery or distillery. Interlinked to the high water use is a substantial heating requirement for mashing, wort boiling, or distillation, typically met by fossil fuel combustion such as gasoil. Many water and waste water streams are leaving the processes hot, such as the returning cooling water or the pot ales. Therefore, several options exist to optimise water and energy efficiency of spirit production through heat recovery. Although these options are known in the sector, they are often not applied in practice due to planning efforts or financial obstacles. In this study, different possibilities and design options for heat recovery systems are explored in four breweries/distilleries in the UK and assessed from an economic but also environmental point of view. The eco-efficiency methodology, according to ISO 14045, is applied to combine both assessment criteria to determine the optimum solution for heat recovery application in practice. The economic evaluation is based on the total value added (TVA) while the Life Cycle Assessment (LCA) methodology is applied to account for the environmental impacts through the installations required for heat recovery. The four case study businesses differ in a) production scale with mashing volumes ranging from 2500 to 40,000 L, in b) terms of heating and cooling technology used, and in c) the extent to which heat recovery is/is not applied. This enables the evaluation of different cases for heat recovery based on empirical data. The analysis provides guidelines for practitioners in the brewing and distilling sector in and outside the UK for the realisation of heat recovery measures. Financial and environmental payback times are showcased for heat recovery systems in the four distilleries which are operating at different production scales. The results are expected to encourage the application of heat recovery where environmentally and economically beneficial and ultimately contribute to a reduction of the water and energy footprint in brewing and distilling businesses.

Keywords: brewery, distillery, eco-efficiency, heat recovery from process and waste water, life cycle assessment

Procedia PDF Downloads 110
426 Bioaccessible Phenolics, Phenolic Bioaccessibility and Antioxidant Activity of Pumpkin Flour

Authors: Emine Aydin, Duygu Gocmen

Abstract:

Pumpkin flour (PF) has a long shelf life and can be used as a nutritive, functional (antioxidant properties, phenolic contents, etc.) and coloring agent in many food items, especially in bakery products, sausages, instant noodles, pasta and flour mixes. Pre-treatment before drying is one of the most important factors affecting the quality of a final powdered product. Pretreatment, such as soaking in a bisulfite solution, provides that total carotenoids in raw materials rich in carotenoids, especially pumpkins, are retained in the dried product. This is due to the beneficial effect of antioxidant additives in the protection of carotenoids in the dehydrated plant foods. The oxygen present in the medium is removed by the radical SO₂, and thus the carotene degradation caused by the molecular oxygen is inhibited by the presence of SO₂. In this study, pumpkin flours (PFs) produced by two different applications (with or without metabisulfite pre-treatment) and then dried in a freeze dryer. The phenolic contents and antioxidant activities of pumpkin flour were determined. In addition to this, the compound of bioavailable phenolic substances which is obtained by PF has also been investigated using in vitro methods. As a result of researches made in recent years, it has been determined that all nutrients taken with foodstuffs are not bioavailable. Bioavailability changes depending on physical properties, chemical compounds, and capacities of individual digestion of foods. Therefore in this study; bioaccessible phenolics and phenolic bioaccessibility were also determined. The phenolics of the samples with metabisulfite application were higher than those of the samples without metabisulfite pre-treatment. Soaking in metabisulfite solution might have a protective effect for phenolic compounds. Phenolics bioaccessibility of pumpkin flours was investigated in order to assess pumpkin flour as sources of accessible phenolics. The higher bioaccessible phenolics (384.19 mg of GAE 100g⁻¹ DW) and phenolic bioaccessibility values (33.65 mL 100 mL⁻¹) were observed in the pumpkin flour with metabisulfite pre-treatment. Metabisulfite application caused an increase in bioaccessible phenolics of pumpkin flour. According to all assay (ABTS, CUPRAC, DPPH, and FRAP) results, both free and bound phenolics of pumpkin flour with metabisulfite pre-treatment had higher antioxidant activity than those of the sample without metabisulfite pre-treatment. The samples subjected to MS pre-treatment exhibited higher antioxidant activities than those of the samples without MS pre-treatment, this possibly due to higher phenolic contents of the samples with metabisulfite applications. As a result, metabisulfite application caused an increase in phenolic contents, bioaccessible phenolics, phenolic bioaccessibility and antioxidant activities of pumpkin flour. It can be said that pumpkin flour can be used as an alternative functional and nutritional ingredient in bakery products, dairy products (yoghurt, ice-cream), soups, sauces, infant formulae, confectionery, etc.

Keywords: pumpkin flour, bioaccessible phenolics, phenolic bioaccessibility, antioxidant activity

Procedia PDF Downloads 318
425 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 89
424 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 93
423 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 260
422 Ethnobotanical Study, Phytochemical Screening and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan

Authors: Randa M. T. Mohamed

Abstract:

Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation and ethanolic extracts by maceration. Phytochemical screening was performed by thin layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynaecological problems were treated by 4 spices. Dermatological diseases were cured by 5 spices while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated by one spice each. Other health problem like fatigue and loss of appetite and low breast milk production were treated by 1, 3 and 2 spices respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta lactamase inhibitory activity. In conclusion, this study could contribute in conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effect. Detailed phytochemical and biological assays of these spices are recommended.

Keywords: spices, ethnobotany, phytoconstituents, antioxidant, beta lactamase inhibition

Procedia PDF Downloads 57
421 Evolution of Web Development Progress in Modern Information Technology

Authors: Abdul Basit Kiani

Abstract:

Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design

Procedia PDF Downloads 43
420 Nude Cosmetic Water-Rich Compositions for Skin Care and Consumer Emotions

Authors: Emmanuelle Merat, Arnaud Aubert, Sophie Cambos, Francis Vial, Patrick Beau

Abstract:

Basically, consumers are sensitive to many stimuli when applying a cream: brand, packaging and indeed formulation compositions. Many studies demonstrated the influence of some stimuli such as brand, packaging, formula color and odor (e.g. in make-up applications). Those parameters influence perceived quality of the product. The objective of this work is to further investigate the relationship between nude skincare basic compositions with different textures and consumer experience. A tentative final step will be to connect the consumer feelings with key ingredients in the compositions. A new approach was developed to better understand touch-related subjective experience in consumers based on a combination of methods: sensory analysis with ten experts, preference mapping on one hundred female consumers and emotional assessments on thirty consumers (verbal and non-verbal through prosody and gesture monitoring). Finally, a methodology based on ‘sensorial trip’ (after olfactory, haptic and musical stimuli) has been experimented on the most interesting textures with 10 consumers. The results showed more or less impact depending on compositions and also on key ingredients. Three types of formulation particularly attracted the consumer: an aqueous gel, an oil-in-water emulsion, and a patented gel-in-oil formulation type. Regarding these three formulas, the preferences were both revealed through sensory and emotion tests. One was recognized as the most innovative in consumer sensory test whereas the two other formulas were discriminated in emotions evaluation. The positive emotions were highlighted especially in prosody criteria. The non-verbal analysis, which corresponds to the physical parameters of the voice, showed high pitch and amplitude values; linked to positive emotions. Verbatim, verbal content of responses (i.e., ideas, concepts, mental images), confirmed the first conclusion. On the formulas selected for their positive emotions generation, the ‘sensorial trip’ provided complementary information to characterize each emotional profile. In the second step, dedicated to better understand ingredients power, two types of ingredients demonstrated an obvious input on consumer preference: rheology modifiers and emollients. As a conclusion, nude cosmetic compositions with well-chosen textures and ingredients can positively stimulate consumer emotions contributing to capture their preference. For a complete achievement of the study, a global approach (Asia, America territories...) should be developed.

Keywords: sensory, emotion, cosmetic formulations, ingredients' influence

Procedia PDF Downloads 167
419 Agricultural Mechanization for Transformation

Authors: Lawrence Gumbe

Abstract:

Kenya Vision 2030 is the country's programme for transformation covering the period 2008 to 2030. Its objective is to help transform Kenya into a newly industrializing, middle-income, exceeding US$10000, country providing a high quality of life to all its citizens by 2030, in a clean and secure environment. Increased agricultural and production and productivity is crucial for the realization of Vision 2030. Mechanization of agriculture in order to achieve greater yields is the only way to achieve these objectives. There are contending groups and views on the strategy for agricultural mechanization. The first group are those who oppose the widespread adoption of advanced technologies (mostly internal combustion engines and tractors) in agricultural mechanization as entirely inappropriate in most situations in developing countries. This group argues that mechanically powered -agricultural mechanization often leads to displacement of labour and hence increased unemployment, and this results in a host of other socio-economic problems, amongst them, rural-urban migration, inequitable distribution of wealth and in many cases an increase in absolute poverty, balance of payments due to the need to import machinery, fuel and sometimes technical assistance to manage them. The second group comprises of those who view the use of the improved hand tools and animal powered technology as transitional step between the most rudimentary step in technological development (characterized by entire reliance on human muscle power) and the advanced technologies (characterized 'by reliance on tractors and other machinery). The third group comprises those who regard these intermediate technologies (ie. improved hand tools and draught animal technology in agriculture) as a ‘delaying’ tactic and they advocate the use of mechanical technologies as-the most appropriate. This group argues that alternatives to the mechanical technologies do not just exist as a practical matter, or, if they are available, they are inefficient and they cannot be compared to the mechanical technologies in terms of economics and productivity. The fourth group advocates a compromise between groups two and third above. This group views the improved hand tools and draught animal technology as more of an 18th century technology and the modem tractor and combine harvester as too advanced for developing countries. This group has been busy designing an ‘intermediate’, ‘appropriate’, ‘mini’, ‘micro’ tractor for use by farmers in developing countries. This paper analyses and concludes on the different agricultural mechanization strategies available to Kenya and other third world countries

Keywords: agriculture, mechanazation, transformation, industrialization

Procedia PDF Downloads 327