Search results for: runoff coefficient of variation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4706

Search results for: runoff coefficient of variation

2186 A Multimodal Discourse Analysis of Gender Representation on Health and Fitness Magazine Cover Pages

Authors: Nashwa Elyamany

Abstract:

In visual cultures, namely that of the United States, media representations are such influential and pervasive reflections of societal norms and expectations to the extent that they impact the manner in which both genders view themselves. Health and fitness magazines fall within the realm of visual culture. Since the main goal of communication is to ensure proper dissemination of information in order for the target audience to grasp the intended messages, it becomes imperative that magazine publishers, editors, advertisers and image producers use different modes of communication within their reach to convey messages to their readers and viewers. A rapid waxing flow of multimodality floods popular discourse, particularly health and fitness magazine cover pages. The use of well-crafted cover lines and visual images is imbued with agendas, consumerist ideologies and properties capable of effectively conveying implicit and explicit meaning to potential readers and viewers. In essence, the primary goal of this thesis is to interrogate the multi-semiotic operations and manifestations of hegemonic masculinity and femininity in male and female body culture, particularly on the cover pages of the twin American magazines Men's Health and Women's Health using corpora that spanned from 2011 to the mid of 2016. The researcher explores the semiotic resources that contribute to shaping and legitimizing a new form of postmodern, consumerist, gendered discourse that positions the reader-viewer ideologically. Methodologically, the researcher carries out analysis on the macro and micro levels. On the macro level, the researcher takes on a critical stance to illuminate the ideological nature of the multimodal ensemble of the cover pages, and, on the micro level, seeks to put forward new theoretical and methodological routes through which the semiotic choices well invested on the media texts can be more objectively scrutinized. On the macro level, a 'themes' analysis is initially conducted to isolate the overarching themes that dominate the fitness discourse on the cover pages under study. It is argued that variation in terms of frequencies of such themes is indicative, broadly speaking, of which facets of hegemonic masculinity and femininity are infused in the fitness discourse on the cover pages. On the micro level, this research work encompasses three sub-levels of analysis. The researcher follows an SF-MMDA approach, drawing on a trio of analytical frameworks: Halliday's SFG for the verbal analysis; Kress & van Leeuween's VG for the visual analysis; and CMT in relation to Sperber & Wilson's RT for the pragma-cognitive analysis of multimodal metaphors and metonymies. The data is presented in terms of detailed descriptions in conjunction with frequency tables, ANOVA with alpha=0.05 and MANOVA in the multiple phases of analysis. Insights and findings from this multi-faceted, social-semiotic analysis are interpreted in light of Cultivation Theory, Self-objectification Theory and the literature to date. Implications for future research include the implementation of a multi-dimensional approach whereby linguistic and visual analytical models are deployed with special regards to cultural variation.

Keywords: gender, hegemony, magazine cover page, multimodal discourse analysis, multimodal metaphor, multimodal metonymy, systemic functional grammar, visual grammar

Procedia PDF Downloads 347
2185 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 153
2184 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 175
2183 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 62
2182 Effect of Sodium Chloride in the Recovery of Acetic Acid from Aqueous Solutions

Authors: Aidaoui Ahleme, Hasseine Abdelmalek

Abstract:

Acetic acid is one of the simplest and most widely used carboxylic acids having many important chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tonnes per year. A great deal of efforts has been made in developing feasible and economic method for recovery of carboxylic acids. Among them, Liquid-liquid extraction using aqueous two-phase systems (ATPS) has been demonstrated to be a highly efficient separation technique. The study of efficiently separating and recovering Acetic acid from aqueous solutions is an important significance on industry and environmentally sustainable development. Many research groups in different countries are working in this field and some methods are proposed in the literature. In this work, effect of sodium chloride with different content (5%, 10% and 20%) on the liquid-liquid equilibrium data of (water+ acetic acid+ DCM) system is investigated. The addition of the salt in an aqueous solution introduces ionic forces which affect liquid-liquid equilibrium and which influence directly the distribution coefficient of the solute. From the experimental results, it can be concluded that when the percentage of salt increases in the aqueous solution, the equilibrium between phases is modified in favor of the extracted phase.

Keywords: acetic acid recovery, aqueous solution, salting-effect, sodium chloride

Procedia PDF Downloads 268
2181 Factors Predicting Individual Health among Pilgrims of Kurdistan County: An Application of Health Belief Model

Authors: Arsalan Ghaderi, Behzad Karami Matin, Abdolrahim Afkhamzadeh, Abouzar Keshavarzi, Parvin Nokhasi

Abstract:

Background: Lack of individual health as one of the major health problems among the pilgrims can be followed by several complications. The main aim of this study was to determine factors predicting individual health among pilgrims of Kurdistan County; in the west of Iran and health belief model (HBM) was applied as theoretical framework. Methods: A cross-sectional study was conducted among 100 pilgrims who referred in the red crescent of Kurdistan County, the west of Iran which was randomly selected for participation in this study. A structured questionnaire was applied for collecting data and data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean age of respondents was 59.45 years [SD: 11.56], ranged from 50 to 73 years. The HBM predictor variables accounted for 47% of the variation in the outcome measure of the individual health. The best predictors for individual health were perceived severity and cause to action. Conclusion: Based on our result, it seems that designing and implementation of educational programs to increase seriousness about complications of lack of individual health and increasing cause to action among the pilgrims may be useful in order to promote individual health among pilgrims.

Keywords: individual health, pilgrims, Iran, health belief model

Procedia PDF Downloads 529
2180 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 16
2179 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite

Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri

Abstract:

The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.

Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric

Procedia PDF Downloads 171
2178 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: separation flow, backward facing step, heat transfer, laminar flow

Procedia PDF Downloads 467
2177 A New Design of Vacuum Membrane Distillation Module for Water Desalination

Authors: Adnan Alhathal Alanezi

Abstract:

The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.

Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module

Procedia PDF Downloads 86
2176 Cerebrovascular Modeling: A Vessel Network Approach for Fluid Distribution

Authors: Karla E. Sanchez-Cazares, Kim H. Parker, Jennifer H. Tweedy

Abstract:

The purpose of this work is to develop a simple compartmental model of cerebral fluid balance including blood and cerebrospinal-fluid (CSF). At the first level the cerebral arteries and veins are modelled as bifurcating trees with constant scaling factors between generations which are connected through a homogeneous microcirculation. The arteries and veins are assumed to be non-rigid and the cross-sectional area, resistance and mean pressure in each generation are determined as a function of blood volume flow rate. From the mean pressure and further assumptions about the variation of wall permeability, the transmural fluid flux can be calculated. The results suggest the next level of modelling where the cerebral vasculature is divided into three compartments; the large arteries, the small arteries, the capillaries and the veins with effective compliances and permeabilities derived from the detailed vascular model. These vascular compartments are then linked to other compartments describing the different CSF spaces, the cerebral ventricles and the subarachnoid space. This compartmental model is used to calculate the distribution of fluid in the cranium. Known volumes and flows for normal conditions are used to determine reasonable parameters for the model, which can then be used to help understand pathological behaviour and suggest clinical interventions.

Keywords: cerebrovascular, compartmental model, CSF model, vascular network

Procedia PDF Downloads 274
2175 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness

Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem

Abstract:

Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).

Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow

Procedia PDF Downloads 539
2174 Production of Plum (Prunus Cerasifera) Concentrate as Edible Color and Evaluation of Color Change Kinetics

Authors: Azade Ghorbani-HasanSaraei, Seyed-Ahmad Shahidi, Sakineh Alizadeh, Adeleh Maghsoudlou

Abstract:

Improvement of color, as a quality attribute of Plum Concentrate, has been made possible by the increase in knowledge of kinetic of color change. Three different heating/evaporation processes were employed for the production of pPlum juice concentrate. The Plum juice was concentrated to a final 55 °Bx from an initial °Bx of 15 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final Plum juice concentration of 55 °Bx was achieved in 17, 24 and 57 min by using the microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. Results indicated that variation in TCD followed both first-order and combined kinetics models, and parameters L, a and b followed only combined model. This model implied that the colour formation and pigment destruction occurred during concentration processes of plum juice.

Keywords: colour, kinetics, concentration, plum juice

Procedia PDF Downloads 518
2173 Prevalence and Antimicrobial Susceptibility of Thermophilic Campylobacter Strains Isolated from Humans and Poultry in Batna

Authors: Baali Mohamed

Abstract:

Campylobacter are among the most common human bacterial gastroenteritis cases in many countries, and poultry meat is considered as a major source of human campylobacteriosis. This study is conducted, on one hand, to determine the prevalence of infection with thermotolerant Campylobacter both in broiler flocks and men, and to study their sensitivity to antibiotics, and secondly for comparing the two methods of isolation of Campylobacter thermotolerant: technique of passive filtration and selective isolation technique using the Karmali medium. This study examined 310 samples, 260 of avian origin and 50 of human origin, during the period from June 2011 to March 2012. Detecting Campylobacter thermotolerant is conducted using the standard ISO 10272. The results show that 66% (95% CI : 60-72%) of avian samples are contaminated with C. TT (172/260). The study of antibiotic susceptibility revealed that all strains (100%) are resistant to ampicillin and amoxicillin/clavulanic acid, 90% to erythromycin, 66.3% to tetracycline, 53.3% to chloramphenicol and 46.7% to enrofloxacin. However, no resistance is noted to gentamycin. In human samples, three strains of C. thermotolerant are detected, with a contamination rate of 6%. The results of the statistical analysis using the chi-square test (χ2) showed that Campylobacter infection, on the one hand, had seasonal variation with a summer peak (p < 0.05) and, on the other hand, are not influenced by the size of the herd.

Keywords: thermotolerant campylobacter, broiler, man, Karmali

Procedia PDF Downloads 394
2172 Characterization of Structural Elements Concrete Metal Fibre

Authors: Benaouda Hemza

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 453
2171 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 135
2170 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: electrical generator, induction motor drive, modeling, pitch angle control, real time control, renewable energy, wind turbine, wind turbine emulator

Procedia PDF Downloads 232
2169 Evaluation of Biogas Potential from Livestock in Malawi

Authors: Regina Kulugomba, Richard Blanchard, Harold Mapoma, Gregory Gamula, Stanley Mlatho

Abstract:

Malawi is a country with low energy access with only 10% of people having access to electricity and 97% of people relying on charcoal and fuel wood. The over dependence on the traditional biomass has brought in a number of negative consequences on people’s health and the environment. To curb the situation, the Government of Malawi (GoM), through its national policy of 2018 and charcoal strategies of 2007, identified biogas as a suitable alternative energy source for cooking. The GoM intends to construct tubular digesters across the country and one of the most crucial factors is the availability of livestock manure. The study was conducted to assess biogas potential from livestock manure by using Quantum Geographic information system (QGIS) software. Potential methane was calculated based on the population of livestock, amount of manure produced per capita and year, total solids, biogas yield and availability coefficient. The results of the study estimated biogas potential at 687 million m3 /year. Districts identified with highest biogas potential were Lilongwe, Ntcheu, Mangochi, Neno, Mwanza, Blantyre, Chiradzulu and Mulanje. The information will help investors and the Government of Malawi to locate potential sites for biogas plants installation.

Keywords: biogas, energy, feedstock, livestock

Procedia PDF Downloads 170
2168 Characterization of Structural Elements in Metal Fiber Concrete

Authors: Ammari Abdelhammid

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 438
2167 An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors

Authors: Hadjoui Abdelhamid, Saimi Ahmed

Abstract:

The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc.

Keywords: Campbell diagram, critical speeds, nonlinear rotor, version h-p of FEM

Procedia PDF Downloads 230
2166 Providing a Suitable Model for Launching New Home Appliances Products to the Market

Authors: Ebrahim Sabermaash Eshghi, Donna Sandsmark

Abstract:

In changing modern economic conditions of the world, one the most important issues facing managers of firms, is increasing the sales and profitability through sales of newly developed products. This is while purpose of decreasing unnecessary costs is one of the most essential programs of smart managers for more implementation with new conditions in current business. In modern life, condition of misgiving is dominant in all of the industries. Accordingly, in this research, influence of different aspects of presenting products to the market is investigated. This study is done through a Quantitative-Qualitative (Interviews and Questionnaire) approach. In sum, 103 of informed managers and experts of Pars-Khazar Company have been examined through census. Validity of measurement tools was approved through judgments of experts. Reliability of tools was gained through Cronbach's alpha coefficient in size of 0.930 and in sum, validity and reliability of tools were approved generally. Results of regression test revealed that the influence of all aspects of product introduction supported the performance of product, positively and significantly. In addition that influence of two new factors raised from the interview, namely Human Resource Management and Management of product’s pre-test on performance of products was approved.

Keywords: introducing products, performance, home appliances, price, advertisement, production

Procedia PDF Downloads 209
2165 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis

Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare

Abstract:

The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.

Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test

Procedia PDF Downloads 401
2164 An Analysis of Fertility Decline in India: Evidences from Tamil Nadu and Uttar Pradesh

Authors: Ajay Kumar

Abstract:

Using data from census of India, sample registration system and national family health survey (NFHS-3), this paper traces spatial pattern, trends and the factors which have played their role differently in fertility transition in Uttar Pradesh and Tamil Nadu. For the purpose spatial variation analysis, trend line and binary logistic regression analysis has been carried out. There exist considerable regional disparities in terms of fertility decline in northern and southern states. The pace of fertility decline has been faster in southern and coastal regions, and at a slow pace in backward northern state. In Tamil Nadu fertility declined substantially among the women of lower and higher age groups in comparison to Uttar Pradesh characterized by low literacy, low female age at marriage, poor health infrastructure and low status of women. The Study shows that Fertility rates have been higher among the most vulnerable and deprived sections of the society like Illiterate women, women belong to scheduled caste, scheduled tribe and women residing in rural areas.

Keywords: age specific fertility rate, fertility transition, replacement level, total fertility rate

Procedia PDF Downloads 284
2163 Environmental Study on Urban Disinfection Using an On-site Generation System

Authors: Víctor Martínez del Rey, Kourosh Nasr Esfahani, Amir Masoud Samani Majd

Abstract:

In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.

Keywords: disinfection, free available chlorine, on-site generation, sodium hypochlorite

Procedia PDF Downloads 115
2162 The Sensitivity of Credit Defaults Swaps Premium to Global Risk Factor: Evidence from Emerging Markets

Authors: Oguzhan Cepni, Doruk Kucuksarac, M. Hasan Yilmaz

Abstract:

Changes in the global risk appetite cause co-movement in emerging market risk premiums. However, the sensitivity of the changes in risk premium to the global risk appetite may vary across emerging markets. In this study, how the global risk appetite affects Credit Default Swap (CDS) premiums in emerging markets are analyzed using Principal Component Analysis (PCA) and rolling regressions. The PCA results indicate that the first common component derived by the PCA accounts for almost 76 percent of the common variation in CDS premiums. Additionally, the explanatory power of the first factor seems to be high over the sample period. However, the sensitivity to the global risk factor tends to change over time and across countries. In this regard, fixed effects panel regressions are used to identify the macroeconomic factors driving the heterogeneity across emerging markets. The panel regression results point to the significance of government debt to GDP and international reserves to GDP in explaining sensitivity. Accordingly, countries with lower government debt and higher reserves tend to be less subject to the variations in the global risk appetite.

Keywords: credit default swaps, emerging markets, principal components analysis, sovereign risk

Procedia PDF Downloads 377
2161 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell

Authors: Nawang Chhunid, Gagnesh Kumar

Abstract:

On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.

Keywords: DRAM Cell, Read Access Time, Retention Time, Average Power dissipation

Procedia PDF Downloads 311
2160 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 30
2159 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel

Authors: Behzad Panahirad, UğUr Atikol

Abstract:

The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.

Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility

Procedia PDF Downloads 169
2158 Sensitivity of Credit Default Swaps Premium to Global Risk Factor: Evidence from Emerging Markets

Authors: Oguzhan Cepni, Doruk Kucuksarac, M. Hasan Yilmaz

Abstract:

Risk premium of emerging markets are moving altogether depending on the momentum and shifts in the global risk appetite. However, the magnitudes of these changes in the risk premium of emerging market economies might vary. In this paper, we focus on how global risk factor affects credit default swaps (CDS) premiums of emerging markets using principal component analysis (PCA) and rolling regressions. PCA results indicate that the first common component accounts for almost 76% of common variation in CDS premiums of emerging markets. Additionally, the explanatory power of the first factor seems to be high over sample period. However, the sensitivity to the global risk factor tends to change over time and across countries. In this regard, fixed effects panel regressions are employed to identify the macroeconomic factors driving the heterogeneity across emerging markets. There are two main macroeconomic variables that affect the sensitivity; government debt to GDP and international reserves to GDP. The countries with lower government debt and higher reserves tend to be less subject to the variations in the global risk appetite.

Keywords: emerging markets, principal component analysis, credit default swaps, sovereign risk

Procedia PDF Downloads 380
2157 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 82