Search results for: transformer neural networks
1425 Epistemic Uncertainty Analysis of Queue with Vacations
Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine
Abstract:
The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion
Procedia PDF Downloads 4331424 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment
Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref
Abstract:
In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment
Procedia PDF Downloads 1831423 Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters
Authors: Lai Yi-Hsiu
Abstract:
The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer’s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.Keywords: language processing, Alzheimer’s disease, Mandarin Chinese, temporal cues
Procedia PDF Downloads 4461422 Create a Brand Value Assessment Model to Choosing a Cosmetic Brand in Tehran Combining DEMATEL Techniques and Multi-Stage ANFIS
Authors: Hamed Saremi, Suzan Taghavy, Seyed Mohammad Hanif Sanjari, Mostafa Kahali
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study, the identified indicators of brand equity are based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: brand, cosmetic product, ANFIS, DEMATEL
Procedia PDF Downloads 4171421 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks
Authors: Shin-Pin Tseng
Abstract:
Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG
Procedia PDF Downloads 3841420 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1491419 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks
Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba
Abstract:
The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.Keywords: authentication, long term evolution, security, vehicle-to-everything
Procedia PDF Downloads 1671418 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 891417 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 901416 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1191415 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 1181414 Efficient Layout-Aware Pretraining for Multimodal Form Understanding
Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose
Abstract:
Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention
Procedia PDF Downloads 1481413 A Survey on Linear Time Invariant Multivariable Positive Real Systems
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties
Procedia PDF Downloads 2741412 A Succinct Method for Allocation of Reactive Power Loss in Deregulated Scenario
Authors: J. S. Savier
Abstract:
Real power is the component power which is converted into useful energy whereas reactive power is the component of power which cannot be converted to useful energy but it is required for the magnetization of various electrical machineries. If the reactive power is compensated at the consumer end, the need for reactive power flow from generators to the load can be avoided and hence the overall power loss can be reduced. In this scenario, this paper presents a succinct method called JSS method for allocation of reactive power losses to consumers connected to radial distribution networks in a deregulated environment. The proposed method has the advantage that no assumptions are made while deriving the reactive power loss allocation method.Keywords: deregulation, reactive power loss allocation, radial distribution systems, succinct method
Procedia PDF Downloads 3761411 Email Phishing Detection Using Natural Language Processing and Convolutional Neural Network
Abstract:
Phishing is one of the oldest and best known scams on the Internet. It can be defined as any type of telecommunications fraud that uses social engineering tricks to obtain confidential data from its victims. It’s a cybercrime aimed at stealing your sensitive information. Phishing is generally done via private email, so scammers impersonate large companies or other trusted entities to encourage victims to voluntarily provide information such as login credentials or, worse yet, credit card numbers. The COVID-19 theme is used by cybercriminals in multiple malicious campaigns like phishing. In this environment, messaging filtering solutions have become essential to protect devices that will now be used outside of the secure perimeter. Despite constantly updating methods to avoid these cyberattacks, the end result is currently insufficient. Many researchers are looking for optimal solutions to filter phishing emails, but we still need good results. In this work, we concentrated on solving the problem of detecting phishing emails using the different steps of NLP preprocessing, and we proposed and trained a model using one-dimensional CNN. Our study results show that our model obtained an accuracy of 99.99%, which demonstrates how well our model is working.Keywords: phishing, e-mail, NLP preprocessing, CNN, e-mail filtering
Procedia PDF Downloads 1261410 The Facilitators and Barriers to the Implementation of Educational Neuroscience: Teachers’ Perspectives
Authors: S. Kawther, C. Marshall
Abstract:
Educational neuroscience has the intention of transforming research findings of the underpinning neural processes of learning to educational practices. A main criticism of the field, hitherto, is that less focus has been put on studying the in-progress practical application of these findings. Therefore, this study aims to gain a better understanding of teachers’ perceptions of the practical application and utilization of brain knowledge. This was approached by investigating the answer to 'What are the facilitators and barriers for bringing research from neuroscience to bear on education?'. Following a qualitative design, semi-structured interviews were conducted with 12 teachers who had a proficient course in educational neuroscience. Thematic analysis was performed on the transcribed data applying Braun & Clark’s steps. Findings emerged with four main themes: time, knowledge, teacher’s involvement, and system. These themes revealed that some effective brain-based practices are being engaged in by the teachers. However, the lack of guidance and challenges regarding this implementation were also found. This study discusses findings in light of the development of educational neuroscience implementation.Keywords: brain-based, educational neuroscience, neuroeducation, neuroscience-informed
Procedia PDF Downloads 1681409 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3
Procedia PDF Downloads 2971408 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 731407 A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect
Authors: Amin Chegenizadeh, Mahdi Keramatikerman, Hamid Nikraz
Abstract:
Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement.Keywords: rigid pavement, Kenpave, Kenslab, thickness, temperature
Procedia PDF Downloads 3731406 Smart Structures for Cost Effective Cultural Heritage Preservation
Authors: Tamara Trček Pečak, Andrej Mohar, Denis Trček
Abstract:
This article investigates the latest technological means, which deploy smart structures that are based on (advanced) wireless sensors technologies and ubiquitous computing in general in order to support the above mentioned decision making. Based on two years of in-field research experiences it gives their analysis for these kinds of purposes and provides appropriate architectures and architectural solutions. Moreover, the directions for future research are stated, because these technologies are currently the most promising ones to enable cost-effective preservation of cultural heritage not only in uncontrolled places, but also in general.Keywords: smart structures, wireless sensors, sensors networks, green computing, cultural heritage preservation, monitoring, cost effectiveness
Procedia PDF Downloads 4461405 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 1891404 Implicature of Jokes in Broadcast Messages
Authors: Yuli Widiana
Abstract:
The study of implicature which is one of the discussions of pragmatics is an interesting and challenging topic to discuss. Implicature is a meaning which is implied in an utterance which is not the same as its literal meaning. The rapid development of information technology results in social networks as media to broadcast messages. The broadcast messages may be in the form of jokes which contain implicature. The research applies the pragmatic equivalent method to analyze the topics of jokes based on the implicatures contained in them. Furthermore, the method is also applied to reveal the purpose of creating implicature in jokes. The findings include the kinds of implicature found in jokes which are classified into conventional implicature and conversational implicature. Then, in detailed analysis, implicature in jokes is divided into implicature related to gender, culture, and social phenomena. Furthermore, implicature in jokes may not only be used to give entertainment but also to soften criticisms or satire so that it does not sound rude and harsh.Keywords: implicature, broadcast messages, conventional implicature, conversational implicature
Procedia PDF Downloads 3591403 Time Compression in Engineer-to-Order Industry: A Case Study of a Norwegian Shipbuilding Industry
Authors: Tarek Fatouh, Chehab Elbelehy, Alaa Abdelsalam, Eman Elakkad, Alaa Abdelshafie
Abstract:
This paper aims to explore the possibility of time compression in Engineer to Order production networks. A case study research method is used in a Norwegian shipbuilding project by implementing a value stream mapping lean tool with total cycle time as a unit of analysis. The analysis resulted in demonstrating the time deviations for the planned tasks in one of the processes in the shipbuilding project. So, authors developed a future state map by removing time wastes from value stream process.Keywords: engineer to order, total cycle time, value stream mapping, shipbuilding
Procedia PDF Downloads 1641402 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 1271401 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 4451400 Counterfeit Product Detection Using Block Chain
Authors: Sharanya C. H., Pragathi M., Vathsala R. S., Theja K. V., Yashaswini S.
Abstract:
Identifying counterfeit products have become increasingly important in the product manufacturing industries in recent decades. This current ongoing product issue of counterfeiting has an impact on company sales and profits. To address the aforementioned issue, a functional blockchain technology was implemented, which effectively prevents the product from being counterfeited. By utilizing the blockchain technology, consumers are no longer required to rely on third parties to determine the authenticity of the product being purchased. Blockchain is a distributed database that stores data records known as blocks and several databases known as chains across various networks. Counterfeit products are identified using a QR code reader, and the product's QR code is linked to the blockchain management system. It compares the unique code obtained from the customer to the stored unique code to determine whether or not the product is original.Keywords: blockchain, ethereum, QR code
Procedia PDF Downloads 1771399 Senior Management in Innovative Companies: An Approach from Creativity and Innovation Management
Authors: Juan Carlos Montalvo-Rodriguez, Juan Felipe Espinosa-Cristia, Pablo Islas Madariaga, Jorge Cifuentes Valenzuela
Abstract:
This article presents different relationships between top management and innovative companies, based on the developments of creativity and innovation management. First of all, it contextualizes the innovative company in relation to management, creativity, and innovation. Secondly, it delves into the vision of top management of innovative companies, from the perspectives of the management of creativity and innovation. Thirdly, their commonalities are highlighted, bearing in mind the importance that both approaches attribute to aspects such as leadership, networks, strategy, culture, technology, environment, and complexity in the top management of innovative companies. Based on the above, an integration of both fields of study is proposed, as an alternative to deepen the relationship between senior management and the innovative company.Keywords: top management, creativity, innovation, innovative firm, leadership, strategy
Procedia PDF Downloads 2621398 Extended Boolean Petri Nets Generating N-Ary Trees
Authors: Riddhi Jangid, Gajendra Pratap Singh
Abstract:
Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.Keywords: marking vector, n-vector, petri nets, reachability
Procedia PDF Downloads 821397 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 3201396 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning
Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.
Abstract:
Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.Keywords: image processing, python, convolution neural network (CNN), machine learning
Procedia PDF Downloads 76