Search results for: superparamagnetic iron oxide nanoparticles (SPIONS)
878 Stability and Rheological Study of Carbon Nanotube Water Based Nanofluid
Authors: S. Rashidi, L. C. Abdullah, R. Walvekar, K. Mohammad, F-R. Ahmadun, M. Y. Faizah
Abstract:
In this research, stability and rheology behavior of Multi-walled carbon nanotube (MWCNT) nanofluids by using Xanthan Gum as a dispersant were measured. This paper addresses the effects of Xanthan Gum (XG) concentration and nanoparticle loading on stability and viscosity of nanofluids. The stability of nanofluids is measured by Zeta Sizer Nano-ZS (Malvern Instruments, ZEN 3600). The zeta potential of the stable samples was analyzed. The rheological behavior of carbon nanotube CNT nanofluids was analyzed using rheometer (Model AR G2, TA Instrument). Both stability and viscosity of the nanofluids increased with increasing CNT and XG concentration. The experimental results indicated that the zeta potential of nanofluid samples is stable. The results demonstrated that the zeta potential was affected by the CNT concentration and is augmented in parallel with increasing CNT concentration. The rheology results showed that the viscosity of CNT/XG nanofluid was increased. The escalated viscosity of CNT/XG nanofluid is owing to the higher van der Waals interaction between the CNT nanoparticles. On the other hand, the viscosity of the CNT/XG nanofluid decreases with increasing temperature. In summary, this research provides useful insight into the behavior of CNT nanofluids.Keywords: nanofluid, carbon nanotube, stability, rheology
Procedia PDF Downloads 132877 Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells
Authors: Vallisree Sivathanu, Kumaraswamidhas Lakshmi Annamalai, Trupti Ranjan Lenka
Abstract:
We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%.Keywords: CBTSSe, silicon, tandem, solar cell, device modeling, current losses, photon losses
Procedia PDF Downloads 118876 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet
Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer
Abstract:
In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding
Procedia PDF Downloads 390875 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.Keywords: buoyancy force, laminar mixed convection, mixture model, nano-fluid, two-phase
Procedia PDF Downloads 471874 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys
Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz
Abstract:
There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys
Procedia PDF Downloads 245873 Socioeconomic Impact of Capture and Sale of Scylla serrata in Metuge Community
Authors: Siran Offman, TeóFilo Nhamuhuco, EzíDio Cuamba
Abstract:
Scylla serrata is important for livelihood in coastal communities in Metuge District, Northern Mozambique, where the study was conducted from June to August 2014. The aim was to estimate the socioeconomic impact of mangrove crabs captures in Metuge communities. Data was collected based on semi-structured questionnaire in the landing sites and in local crab markets. In total were inquired 26 crab collectors and 6 traders, this activity is practiced only by men, with ages ranging from 15 to 68 years old. To capture the crab the collectors use a long iron hook with 1.5-2 meters, during 5-7 times per week, spending about 5-8 hours a day. The captured varied from 2-20 kg per day. In the village 1 kg costs 1-1.5 USD and 3 USD applied by traders who sell along the streets, for tourists and specific customers from Asia, where the traders can sell until 50 kg.The incomes vary from 11-174USD per month. The value chain between the collectors and trader is unreasonable, as the second makes less effort and earns more, thereby the socio-economic impact is observed, however not high for the collectors, as the money is intended to purchase food and agricultural instruments. In another hand, 90% of collectors dropped out the school, and the money does not have a great impact as they still have precarious housing, rely on community wells to access water, do not have electric power and possess high number of family members.Keywords: socio-economic and of, impacts, capture, sale, Scylla serrata
Procedia PDF Downloads 222872 Electrospinning in situ Synthesis of Graphene-Doped Copper Indium Disulfide Composite Nanofibers for Efficient Counter Electrode in Dye-Sensitized Solar Cells
Authors: Lidan Wang, Shuyuan Zhao, Jianxin He
Abstract:
In this paper, graphene-doped copper indium disulfide (rGO+CuInS2) composite nanofibers were fabricated via electrospinning, in situ synthesis, and carbonization, using polyvinyl pyrrolidone (PVP), copper dichloride (CuCl2), indium trichloride (InCl3), thiourea (C2H5NS) and graphene oxide nanosheets (Go) as the precursor solution for electrospinning. The average diameter of rGO+CuInS2 nanofibers were about 100 nm, and graphene nanosheets anchored with chalcopyrite CuInS2 nanocrystals 8-15 nm in diameter were overlapped and embedded, aligning along the fiber axial direction. The DSSC with a rGO+CuInS2 counter electrode exhibits a power conversion efficiency of 5.93%; better than the corresponding values for a DSSC with a CuInS2 counter electrode, and comparable to that of a reference DSSC with a Pt counter electrode. The excellent photoelectric performance of the rGO+CuInS2 counter electrode was attributed to its high specific surface area, which facilitated permeation of the liquid electrolytes, promoted electron and ion transfer and provided numerous catalytically active sites for the oxidation reaction of the electrolytic (I- /I3-).Keywords: dye-sensitized solar cells, counter electrode, electrospinning, graphene
Procedia PDF Downloads 458871 Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate
Authors: Bi Wa, Su-Yeon Kwon, Ik-Joong Kang
Abstract:
Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced raman scattering
Procedia PDF Downloads 244870 Micromorphological Traits and Essential Oil Contents of Valeriana tuberosa L.
Authors: Nada Bezić, Valerija Dunkić, Antonija Markovina, Mirko Rušćić
Abstract:
Valeriana is a genus of the well-known medicinal plant of Valerianacea family and growing wild in the sub-Mediterranean area. This abstract reports the types and distribution of trichomes and phyto-active composition of the essential oil of the Valeriana tuberosa from mountain Kozjak, near Split, Croatia. Two types of glandular trichomes: peltate (one basal epidermal cell, one short stalk cell and a small head) and capitate trichomes (one basal epidermal cell, one elongated stalk cell) were observed on leaf, using light microscopy. We analyzed the composition of the essential oil of stems and leaves of V. tuberosa species. Water distilled essential oils from aerial parts of investigation plant have been analysed by GC and GC/MS using VF-5ms capillary column. The total yield of oil was 0.2%, based on dry weight of samples. Forty compounds representing 94.1% of the total oil of V. tuberosa. This essential oil was characterized by a high concentration of isovaleric acid (17.2%), geranyl isovalerate (12.2%) and caryophyllene oxide (7.7%). The present study gives additional knowledge about micromorphological traits and secondary metabolites contents on the genus Valeriana.Keywords: essential oil, isovaleric acid, Valeriana tuberosa, Croatia
Procedia PDF Downloads 232869 Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization
Authors: Abdi Djamila, Haffar Hichem
Abstract:
The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells.Keywords: polymethylene blue, electropolymerization, homo-lumo, photocurrents
Procedia PDF Downloads 271868 A.T.O.M.- Artificial Intelligent Omnipresent Machine
Authors: R. Kanthavel, R. Yogesh Kumar, T. Narendrakumar, B. Santhosh, S. Surya Prakash
Abstract:
This paper primarily focuses on developing an affordable personal assistant and the implementation of it in the field of Artificial Intelligence (AI) to create a virtual assistant/friend. The problem in existing home automation techniques is that it requires the usage of exact command words present in the database to execute the corresponding task. Our proposed work is ATOM a.k.a ‘Artificial intelligence Talking Omnipresent Machine’. Our inspiration came from an unlikely source- the movie ‘Iron Man’ in which a character called J.A.R.V.I.S has omnipresence, and device controlling capability. This device can control household devices in real time and send the live information to the user. This device does not require the user to utter the exact commands specified in the database as it can capture the keywords from the uttered commands, correlates the obtained keywords and perform the specified task. This ability to compare and correlate the keywords gives the user the liberty to give commands which are not necessarily the exact words provided in the database. The proposed work has a higher flexibility (due to its keyword extracting ability from the user input) comparing to the existing work Intelligent Home automation System (IHAS), is more accurate, and is much more affordable as it makes use of WI-FI module and raspberry pi 2 instead of ZigBee and a computer respectively.Keywords: home automation, speech recognition, voice control, personal assistant, artificial intelligence
Procedia PDF Downloads 337867 Gender Differences in Wrist Kinematics and the Impact of Club Choice on Collegiate Golfers
Authors: Ka Hin Kevin Lee, Jacob Lindh, Yue Qing LI
Abstract:
The biomechanics of golf swing performance are increasingly being investigated to better understand the relationship between gender and equipment choices. Gender-based variations in swing mechanics, particularly wrist kinematics, are thought to have a substantial influence on performance. While current studies show gender differences in wrist motions and the impact of club selection, there is little study on amateur collegiate golfers. This demography provides a unique perspective, spanning professional and leisure activity and providing significant biomechanical aspects. This study looks into gender differences in wrist kinematics during golf swings, specifically angular velocities (yaw, pitch, and roll) and the impact of club choice. Ten undergraduate golfers (five male and five female) took part in the study, each doing five swings with a 7-iron and a driver. Participants used their own clubs to guarantee familiarity and minimize variation. Xsens MTw Awinda wireless motion sensors were mounted on their forearms and wrists, gathering high-resolution motion data at 100 Hz. A thorough calibration procedure was used to synchronise sensor data with individual stances. The trial replicated real-world playing settings, with players told to take full-power swings. Data were processed and analysed in MATLAB, with angular velocity profiles extracted for each swing.Keywords: biomechanics, sports, performance, gender, wrist, kinematics
Procedia PDF Downloads 16866 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children
Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik
Abstract:
The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.Keywords: ADHD children, instant surabi, soybean, torbangun
Procedia PDF Downloads 151865 Modeling and Optimization of Nanogenerator for Energy Harvesting
Authors: Fawzi Srairi, Abderrahmane Dib
Abstract:
Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator
Procedia PDF Downloads 309864 Utilization of Aluminium Dross as a Main Raw Material for Synthesize the Geopolymers via Mechanochemistry Method
Authors: Pimchanok Puksisuwan, Pitak Laorattanakul, Benya Cherdhirunkorn
Abstract:
The use of aluminium dross as a raw material for geopolymer synthesis via mechanochemistry method was studied. The geopolymers were prepared using aluminium dross from secondary aluminium industry, fly ash from a biomass power plant and liquid alkaline activators, which is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) (Na2SiO3/NaOH ratio 4:1, 3:1 and 2:1). Aluminium dross consists mostly of alumina (Al2O3), silicon oxide (SiO2) and aluminium nitride (AlN). The raw materials were mixed and milled using the high energy ball milling method for 5, 10 and 15 minutes in order to reduce the particle size. The milled powders were uniaxially pressed into a cylinder die with the pressure of 2200 psi. The cylinder samples were cured in the sealed plastic bags for 3, 7 and 14 days at the room temperature and 60°C for 24 hour. The mechanical property of geopolymers was investigated. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out in order to study the microstructure and phase structures of the geopolymers, respectively. The results showed that aluminium dross could enhance the mechanical property of geopolymers product by mechanochemistry method and meet the TISI requirements.Keywords: aluminium dross, fly ash, geopolymer, mechanochemistry
Procedia PDF Downloads 255863 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature
Authors: Enayat Enayati, Reza Behtash
Abstract:
The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.Keywords: catalyst, converter, poisoning, temperature
Procedia PDF Downloads 821862 Impact of Mid-Day Meal on Nutritional Status of Primary School Children in Haryana, India
Authors: Vinti Davar
Abstract:
India is one among the many countries where child malnutrition is severe and also a major underlying cause of child mortality. The Mid Day Meal (MDM) program was launched to improve the nutritional status of children, attendance, and retention in schools. It was based on one meal provided to the children, who are attending elementary school (primary school). The objective of present study was to evaluate the impact of mid-day meal on the nutritional status of primary school children in Haryana, India. The present work was carried out on 1200 children between 6-11years of age, studying in primary schools in Haryana, India. Out of these 960 students as, the experimental group was selected from schools where mid-day meal is supplied by the government, and 240 students as control group where mid-day meal is not supplied. The mean height, weight, and BMI of children of both the groups were found to be significantly low as compared to NCHS standards. Stunting was found in 56.40% MDMB (Mid-day meal beneficiaries) and 62.50 % NMDMC (non- mid-day meal children).The weight of almost all subjects were low according to age indicating thinness. Anemia was more prevalent in MDMB as compared to NMDMC may be because school meals did not include vegetables. The consumption of energy, proteins, fat, calcium, iron, vitamins was significantly low (P ≤ .01) in both groups especially in girls of NMDM. The consumption of various food groups except vegetables was better in MDMB compared to NMDMC. It is concluded that with certain improvements, mid-meal can be beneficial in meeting everyday requirements of school going children.Keywords: foods, meals, nutritional status, school going children
Procedia PDF Downloads 310861 The Effect of Interfacial Chemistry on Mechanical Properties of Epoxy Composites Containing Poly (Ether Ether Ketone) Grafted Multiwall Carbon Nanotubes
Authors: Prajakta Katti, Suryasarathi Bose, S. Kumar
Abstract:
In this work, carboxyl functionalized multiwall carbon nanotubes (a-MWNTs) covalently grafted with hydroxylated functionalized poly (ether ether ketone), HPEEK, which is miscible with the pre-polymer (epoxy) through the esterification reaction. The functionalized MWNTs were systematically characterized using spectroscopic techniques. The epoxy composites containing a-MWNTs and HPEEK grafted multiwall carbon nanotubes (HPEEK-g-MWNTs) were formulated using mechanical stirring coupled with a bath sonicator to improve the dispersion property of the nanoparticles and were subsequently cured at 80 ̊C and post cured at 180 ̊C. With the addition of 0.5 wt% of HPEEK-g-MWNTs, an impressive 44% enhancement in the storage modulus, 22% increase in tensile strength and 38% increase in fracture toughness was observed with respect to neat epoxy. In addition to these mechanical properties, the epoxy composites displayed significant enhancement in the hardness without reducing thermal stability. These improved properties were attributed to the tailored interface between HPEEK-MWNTs and epoxy matrix.Keywords: epoxy, MWNTs, HPEEK-g-MWNTs, tensile properties, nanoindentation, fracture toughness
Procedia PDF Downloads 310860 Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum anguivi Lam Berries (Gnagnan) Cultivated in CôTe D'Ivoire
Authors: G. Dan Chépo, L. Ban-Koffi, N. Kouassi Kouakou, M. Dje Kouakou, J. Nemlin, A. Sahore Drogba, L. Kouame Patrice
Abstract:
Solanum anguivi Lam, collectively called Gnagnan in Côte d'Ivoire is an eggplant with nutritional and therapeutic potentialities more or less known. The present study was undertaken to analyze the biochemical composition of berries at the different stages of maturity. Data showed that at the first stage of maturity (green berries), fruits are rich in ascorbic acid (34.48 ± 1.7 mg / 100 g dm), phenolic compounds (956.7 ± 71.14 mg / 100 g dm), iron (467.7 ± 1.84 mg / 100 g dm), magnesium (404.6 ± 16.25 mg / 100 g dm) and potassium (404.64 ± 16.25 mg/100 g dm). However, at the last stage of maturity (red berries), fruits are rich in proteins, cellulose, total sugars, fat and potassium with the values of 22.53 ± 2 g/100 g dm, 19.12 ± 0.35 g/100 g dm, 3.7 ± 0.2 g/100 g dm, 2.65 ± 0.19 g/100 g dm and 2290.84 ± 22.24 mg / 100 g dm, respectively. The chromatography on thin layer revealed the presence of glucose, ribose, xylose, arabinose and fructose at all the maturity stages. Except for alkaloids and gallic tannins, the phytochemical sorting revealed that Gnagnan contain many pharmacological components. According to the maturity stages, orange and red berries showed a higher content in sterols and polyterpens, flavonoids and saponins. The green berries contain most of polyphenols, catechintannins and quinons. As for the yellow berries, they are rich in polyphenols and catechintannins. These data contribute to enhance clinical researches on nutritional and pharmacological properties of S. anguivi Lam.Keywords: Gnagnan, maturity stage, chemical composition, chromatography thin layer, phytochemical sorting
Procedia PDF Downloads 498859 Bonding Strength of Adhesive Scarf Joints Improved by Nano-Silica Subjected to Humidity
Authors: B. Paygozar, S.A. Dizaji, A.C. Kandemir
Abstract:
In this study, the effects of the modified adhesive including different concentrations of Nano-silica are surveyed on the bonding strength of the adhesive scarf joints. The nanoparticles are added in two different concentrations, to an epoxy-based two-component structural adhesive, Araldite 2011, to survey the influences of the nanoparticle weight percentage on the failure load of the joints compared to that of the joints manufactured by the neat adhesive. The effects of being exposure to a moist ambience on the joint strength are also investigated for the joints produced of both neat and modified adhesives. For this purpose, an ageing process was carried out on the joints of both neat and improved kinds with variable immersion periods (20, 40 and 60 days). All the specimens were tested under a quasi-static tensile loading of 2 mm/min speed so as to find the quantities of the failure loads. Outcomes indicate that the failure loads of the joints with modified adhesives are measurably higher than that of the joint with neat adhesive, even while being put for a while under a moist condition. Another result points out that humidity lessens the bonding strength of all the joints of both types as the exposure time increases, which can be attributed to the change in the failure mode.Keywords: bonding strength, humidity, nano-silica, scarf joint
Procedia PDF Downloads 174858 The Lead Poisoning of Beethoven and Handel
Authors: Michael Stevens
Abstract:
David Hunter, a musicologist, has suggested that both Beethoven and Handel had chronic lead poisoning from the wine that they drank. These two eminent musical composers had some striking similarities. Beethoven had alcohol dependency and preferred wine, to which lead had been added to improve the taste. Handel was obese due to an eating disorder that included drinking tainted wine after large meals. They both had paresthesia of their extremities that they interpreted as rheumatism. This is a common sensory symptom from chronic lead poisoning. Their differences are marked in that Beethoven was profoundly deaf by the end of his life, whereas Handel had remarkably good hearing. Handel had paresis of three fingers of his right hand, whereas Beethoven lacked any motor symptoms. Beethoven reported recurrent abdominal pain suggestive of lead colic, whereas it can only be inferred that this symptom was present in Handel. Lead poisoning is likely in Handel because his paralysis was consistent with radial nerve involvement in the dominant hand. In addition, it was cured by hot baths, which have been shown to reduce total body lead content by exchanging with iron and calcium ions in water. Although lead produces predominantly motor symptoms in classic or subacute lead poisoning, and sensory symptoms in chronic lead poisoning, lead poisoning causes a variety of symptoms that depending on duration and level of exposure, are extremely variable from person to person. It therefore seems likely that Handel had lead poisoning, but extremely likely that Beethoven did because of the confirmatory finding of high levels of lead deep in his skull bone, which is a good measure of total body burden.Keywords: beethoven, handel, lead, poisoning
Procedia PDF Downloads 98857 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer
Authors: R. Karmouch
Abstract:
A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons
Procedia PDF Downloads 421856 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer
Authors: Maryam Kiani
Abstract:
The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.Keywords: fly-ash, carbon black, nanotechnology, geopolymer
Procedia PDF Downloads 113855 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.Keywords: benchmark, blast furnace, CO₂ emission, fuel rate
Procedia PDF Downloads 281854 Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish
Authors: Justina I. R. Udotong, Essien U. Essien
Abstract:
Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65 mg/l of Pb, 0.85 mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum.Keywords: diagnostic enzymes, enzyme activity, heavy metals, tissues investigations
Procedia PDF Downloads 291853 Isoflavone and Mineral Content in Conventional Commercial Soybean Cultivars and Transgenic Soybean Planted in Minas Gerais, Brazil
Authors: Renata Adriana Labanca, Gabriela Rezende Costa, Nilton de Oliveira Couto e Silva, José Marcos Gontijo Mandarino, Rodrigo Santos Leite, Nilson César Castanheira Guimarães, Roberto Gonçalves Junqueira
Abstract:
The objective of this study was to evaluate the differences in composition between six brands of conventional soybean and six genetically modified cultivars (GM), all of them from Minas Gerais State, Brazil. We focused on the isoflavones profile and mineral content questioning the substantial equivalence between conventional and GM organisms. The statement of compliance label for conventional grains was verified for the presence of genetic modified genes by real time polymerase chain reaction (PCR). We did not detect the presence of the 35S promoter in commercial samples, indicating the absence of transgene insertion. For mineral analysis, we used the method of inductively coupled plasma-optical emission spectrometry (ICP-OES). Isoflavones quantification was performed by high performance liquid chromatography (HPLC). The results showed no statistical difference between the conventional and transgenic soybean groups concerning isoflavone content and mineral composition. The concentration of potassium, the main mineral component of soy, was the highest in conventional soybeans compared to that in GM soy, while GM samples presented the highest concentrations of iron.Keywords: glycine max, genetically modified organism, bioactive compounds, ICP-OES, HPLC
Procedia PDF Downloads 458852 N Doped Multiwall Carbon Nanotubes Growth over a Ni Catalyst Substrate
Authors: Angie Quevedo, Juan Bussi, Nestor Tancredi, Juan Fajardo-Díaz, Florentino López-Urías, Emilio Muñóz-Sandoval
Abstract:
In this work, we study the carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition (CCVD) over a catalyst with 20 % of Ni supported over La₂Zr₂O₇ (Ni20LZO). The high C solubility of Ni made it one of the most used in CNTs synthesis. Nevertheless, Ni presents also sintering and coalescence at high temperature. These troubles can be reduced by choosing a suitable support. We propose La₂Zr₂O₇ as for this matter since the incorporation of Ni by co-precipitation and calcination at 900 °C allows a good dispersion and interaction of the active metal (in the oxidized form, NiO) with this support. The CCVD was performed using 1 g of Ni20LZO at 950 °C during 30 min in Ar:H₂ atmosphere (2.5 L/min). The precursor, benzylamine, was added by a nebulizer-sprayer. X ray diffraction study shows the phase separation of NiO and La₂Zr₂O₇ after the calcination and the reduction to Ni after the synthesis. Raman spectra show D and G bands with a ID/IG ratio of 0.75. Elemental study verifies the incorporation of 1% of N. Thermogravimetric analysis shows the oxidation process start at around 450 °C. Future studies will determine the application potential of the samples.Keywords: N doped carbon nanotubes, catalytic chemical vapor deposition, nickel catalyst, bimetallic oxide
Procedia PDF Downloads 163851 Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites
Authors: Fatma Zehra Engin Sagirli, Eyup Sabri Kayali, A. Sezai Sarac
Abstract:
In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS.Keywords: nanocomposites, core-shell, pyrole, surfactant
Procedia PDF Downloads 403850 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems
Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune
Abstract:
This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction
Procedia PDF Downloads 146849 Protection of Transformers Against Surge Voltage
Authors: Anil S. Khopkar, Umesh N. Soni
Abstract:
Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection is not provided. A Surge Arrester is a device connected to a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arresters (MOSA) are connected across each terminal. Basic Insulation Level (BIL) has been defined in national and international standards of transformers based on their voltage rating. While designing transformer insulation, the BIL of the transformer, Surge arrester ratings and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrester connected, the location of the surge arrester, the margin considered in the insulation design, the quantity of surge voltage strike, etc. This paper demonstrates the role of Surge arresters in the protection of transformers against over-voltage, transformer insulation design, optimum location of surge arresters and their connection lead length, Insulation coordination for transformer, protection margin in BIL and methods of protection of transformers against surge voltages, in detail.Keywords: surge voltage, surge arresters, insulation coordination, protection margin
Procedia PDF Downloads 64