Search results for: myoelectric signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5007

Search results for: myoelectric signal processing

2517 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 169
2516 Removal of Iron (II) from Wastewater in Oil Field Using 3-(P-Methyl) Phenyl-5-Thionyl-1,2,4-Triazoline Assembled on Silver Nanoparticles

Authors: E. M. S. Azzam, S. A. Ahmed, H. H. Mohamed, M. A. Adly, E. A. M. Gad

Abstract:

In this work we prepared 3-(p-methyl) phenyl-5-thionyl-1,2,4-triazoline (C1). The nanostructure of the prepared C1 compound was fabricated by assembling on silver nanoparticles. The UV and TEM analyses confirm the assembling of C1 compound on silver nanoparticles. The effect of C1 compound on the removal of Iron (II) from Iron contaminated samples and industrial wastewater samples (produced water from oil processing facility) were studied before and after their assembling on silver nanoparticles. The removal of Iron was studied at different concentrations of FeSO4 solution (5, 14 and 39 mg/l) and field sample concentration (661 mg/l). In addition, the removal of Iron (II) was investigated at different times. The Prepared compound and its nanostructure with AgNPs show highly efficient in removing the Iron ions. Quantum chemical descriptors using DFT was discussed. The output of the study pronounces that the C1 molecule can act as chelating agent for Iron (II).

Keywords: triazole derivatives, silver nanoparticles, iron (II), oil field

Procedia PDF Downloads 655
2515 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 477
2514 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 717
2513 EEG Analysis of Brain Dynamics in Children with Language Disorders

Authors: Hamed Alizadeh Dashagholi, Hossein Yousefi-Banaem, Mina Naeimi

Abstract:

Current study established for EEG signal analysis in patients with language disorder. Language disorder can be defined as meaningful delay in the use or understanding of spoken or written language. The disorder can include the content or meaning of language, its form, or its use. Here we applied Z-score, power spectrum, and coherence methods to discriminate the language disorder data from healthy ones. Power spectrum of each channel in alpha, beta, gamma, delta, and theta frequency bands was measured. In addition, intra hemispheric Z-score obtained by scoring algorithm. Obtained results showed high Z-score and power spectrum in posterior regions. Therefore, we can conclude that peoples with language disorder have high brain activity in frontal region of brain in comparison with healthy peoples. Results showed that high coherence correlates with irregularities in the ERP and is often found during complex task, whereas low coherence is often found in pathological conditions. The results of the Z-score analysis of the brain dynamics showed higher Z-score peak frequency in delta, theta and beta sub bands of Language Disorder patients. In this analysis there were activity signs in both hemispheres and the left-dominant hemisphere was more active than the right.

Keywords: EEG, electroencephalography, coherence methods, language disorder, power spectrum, z-score

Procedia PDF Downloads 421
2512 Inversion of Gravity Data for Density Reconstruction

Authors: Arka Roy, Chandra Prakash Dubey

Abstract:

Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.

Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation

Procedia PDF Downloads 210
2511 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound

Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen

Abstract:

Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.

Keywords: NDT, correlation analysis, image processing, damage, inspection

Procedia PDF Downloads 545
2510 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)

Procedia PDF Downloads 235
2509 Quantum Computing with Qudits on a Graph

Authors: Aleksey Fedorov

Abstract:

Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived.

Keywords: quantum computing, qudits, Toffoli gates, gate decomposition

Procedia PDF Downloads 144
2508 Automatic Queuing Model Applications

Authors: Fahad Suleiman

Abstract:

Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.

Keywords: queuing systems, queuing system models, scheduling algorithms, patients

Procedia PDF Downloads 351
2507 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 162
2506 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture

Authors: Jerzy Merkisz, Piotr Lijewski, Pawel Fuc, Maciej Siedlecki, Andrzej Ziolkowski, Sylwester Weymann

Abstract:

The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for the carriage of this type of cargo in terms of exhaust emissions and fuel consumption.

Keywords: emission, transport, fuel consumption, PEMS

Procedia PDF Downloads 526
2505 Effects of Culture Conditions on the Adhesion of Yeast Candida spp. and Pichia spp. to Stainless Steel with Different Polishing and Their Control

Authors: Ružica Tomičić, Zorica Tomičić, Peter Raspor

Abstract:

An abundant growth of unwanted yeasts in food processing plants can lead to problems in quality and safety with significant financial losses. Candida and Pichia are the genera mainly involved in spoilage of products in the food and beverage industry. These contaminating microorganisms can form biofilms on food contact surfaces, being difficult to eradicate, increasing the probability of microbial survival and further dissemination during food processing. It is well known that biofilms are more resistant to antimicrobial agents compared to planktonic cells and this makes them difficult to eliminate. Among the strategies used to overcome resistance to antifungal drugs and preservatives, the use of natural substances such as plant extracts has shown particular promise, and many natural substances have been found to exhibit antifungal properties. This study aimed to investigated the impact of growth medium (Malt Extract broth (MEB) or Yeast Peptone Dextrose (YPD) broth) and temperatures (7°C, 37°C, 43°C for Candida strains and 7°C, 27°C, 32°C for Pichia strains) on the adhesion of Candida spp. and Pichia spp. to stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20 – 961.9 nm), a material commonly used in the food industry. We also evaluated the antifungal and antiadhesion activity of plant extracts such as Humulus lupulus, Alpinia katsumadai and Evodia rutaecarpa against C. albicans, C glabrata and P. membranifaciens and investigated whether these plant extracts can interfere with biofilm formation. The adhesion was assessed by the crystal violet staining method, while the broth microdilution method CLSI M27-A3 was used to determine the minimum inhibitory concentration (MIC) of plant extracts. Our results indicated that the nutrient content of the medium significantly influenced the amount of adhered cells of the tested yeasts. The growth medium which resulted in a higher adhesion of C. albicans and C. glabrata was MEB, while for C. parapsilosis and C. krusei was YPD. In the case of P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. Regarding the effect of temperature, C. albicans strain adhered to stainless steel surfaces in significantly higher level at a temperature of 43°C, while on the other hand C. glabrata, C. parapsilosis and C. krusei showed a different behavior with significantly higher adhesion at 37°C than at 7°C and 43°C. Further, the adherence ability of Pichia strains was highest at 27°C. Based on the MIC values, all plant extracts exerted significant antifungal effects with MIC values ranged from 100 to 400 μg/mL. It was observed that biofilm of C. glabrata were more resistance to plant extracts as compared to C. albicans. However, extracts of A. katsumadai and E. rutaecarpa promoted the growth and development of the preformed biofilm of P. membranifaciens. Thus, the knowledge of how these microorganisms adhere and which factors affect this phenomenon is of great importance in order to avoid their colonization on food contact surfaces.

Keywords: adhesion, Candida spp., Pichia spp., plant extracts

Procedia PDF Downloads 193
2504 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 228
2503 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 349
2502 Renovation of Industrial Zones in Ho Chi Minh City: An Approach from Changing Function of Processing to Urban Warehousing

Authors: Thu Le Thi Bao

Abstract:

Industrial parks have both active roles in promoting economic development and source of appearance of boarding houses and slums in the adjacent area, lacking infrastructure, causing many social evils. The context of the recent pandemic and climate change on a global scale pose issues that need to be resolved for sustainable development. Ho Chi Minh City aims to develop housing for migrant workers to stabilize human resources and, at the same time, solve problems of social evils caused by poor living conditions. The paper focuses on the content of renovating existing industrial parks and worker accommodation in Ho Chi Minh City to propose appropriate models, contributing to the goal of urban embellishment and solutions for industrial parks to adapt to abnormal impact conditions such as pandemics, climate change, crises.

Keywords: industrial park, social housing, accommodation, distribution center

Procedia PDF Downloads 111
2501 Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum

Authors: Diya Alsafadi, Fawwaz Khalili, Mohammad W. Amer

Abstract:

Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production.

Keywords: biofuel, acetone-butanol-ethanol fermentation, date palm waste, Clostridium acetobutylicum

Procedia PDF Downloads 352
2500 Multi-Period Supply Chain Design under Uncertainty

Authors: Amir Azaron

Abstract:

In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.

Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control

Procedia PDF Downloads 293
2499 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

Authors: Iris Käppler, Paul Matthäi, Chokri Cherif

Abstract:

In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Keywords: non-crimp fabric, adhesive, stitch-free, high-performance fibre

Procedia PDF Downloads 351
2498 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 70
2497 AI In Health and Wellbeing - A Seven-Step Engineering Method

Authors: Denis Özdemir, Max Senges

Abstract:

There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.

Keywords: recommender systems, natural language processing, health apps, engineering methods

Procedia PDF Downloads 164
2496 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 56
2495 Changes in When and Where People Are Spending Time in Response to COVID-19

Authors: Nicholas Reinicke, Brennan Borlaug, Matthew Moniot

Abstract:

The COVID-19 pandemic has resulted in a significant change in driving behavior as people respond to the new environment. However, existing methods for analyzing driver behavior, such as travel surveys and travel demand models, are not suited for incorporating abrupt environmental disruptions. To address this, we analyze a set of high-resolution trip data and introduce two new metrics for quantifying driving behavioral shifts as a function of time, allowing us to compare the time periods before and after the pandemic began. We apply these metrics to the Denver, Colorado metropolitan statistical area (MSA) to demonstrate the utility of the metrics. Then, we present a case study for comparing two distinct MSAs, Louisville, Kentucky, and Des Moines, Iowa, which exhibit significant differences in the makeup of their labor markets. The results indicate that although the regions of study exhibit certain unique driving behavioral shifts, emerging trends can be seen when comparing between seemingly distinct regions. For instance, drivers in all three MSAs are generally shown to have spent more time at residential locations and less time in workplaces in the time period after the pandemic started. In addition, workplaces that may be incompatible with remote working, such as hospitals and certain retail locations, generally retained much of their pre-pandemic travel activity.

Keywords: COVID-19, driver behavior, GPS data, signal analysis, telework

Procedia PDF Downloads 111
2494 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect

Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan

Abstract:

Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing

Keywords: bearing, dipole, noise, sound

Procedia PDF Downloads 293
2493 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay

Procedia PDF Downloads 395
2492 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 335
2491 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer

Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang

Abstract:

Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.

Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase

Procedia PDF Downloads 410
2490 Security in Resource Constraints Network Light Weight Encryption for Z-MAC

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.

Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC

Procedia PDF Downloads 141
2489 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 529
2488 Increasing Value Added and Competitive Advantage by Technology Adoption

Authors: Fidiana Suwitho

Abstract:

Research and community service is one of important lecturer assignment in Indonesia. This article was made to meet those needs by assisting home industry entrepreneurs of various chips in Banyuwangi. Community service in this scheme are intended to increase the revenue of craftsmen of chips by improving value added of chips through food engineering technology. Ibu Anisa has produced various kinds of chips that are breadfruit chips, banana chips, yam chips, and cassava chips. In business development, Ibu Anisa facing various problems both in terms of production and management aspects. The process of production and management and marketing are still conventional so that increased demand cannot be offset by production capacity. A researcher team of STIESIA has assist partners in the processing stage, from manually to the technologically. This activity has a positive impact to However, this process has not been reached on sustainable marketing aspect, which is where the partners are still difficult to reach a wider market because of limited access.

Keywords: food engineering technology, value added of chips, community service

Procedia PDF Downloads 272