Search results for: improvement of model accuracy and reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23614

Search results for: improvement of model accuracy and reliability

21154 Multi-Criteria Evaluation of Integrated Renewable Energy Systems for Community-Scale Applications

Authors: Kuanrong Qiu, Sebnem Madrali, Evgueniy Entchev

Abstract:

To achieve the satisfactory objectives in deploying integrated renewable energy systems, it is crucial to consider all the related parameters affecting the design and decision-making. The multi-criteria evaluation method is a reliable and efficient tool for achieving the most appropriate solution. The approach considers the influential factors and their relative importance in prioritizing the alternatives. In this paper, a multi-criteria decision framework, based on the criteria including technical, economic, environmental and reliability, is developed to evaluate and prioritize renewable energy technologies and configurations of their integrated systems for community applications, identify their viability, and thus support the adoption of the clean energy technologies and the decision-making regarding energy transitions and transition patterns. Case studies for communities in Canada show that resource availability and the configurations of the integrated systems significantly impact the economic performance and environmental performance.

Keywords: multi-criteria, renewables, integrated energy systems, decision-making, model

Procedia PDF Downloads 93
21153 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW

Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder

Abstract:

Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.

Keywords: breast cancer, screening, breast density, artificial intelligence, mammography

Procedia PDF Downloads 4
21152 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation

Authors: M. Farnush

Abstract:

This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.

Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics

Procedia PDF Downloads 318
21151 A Cohort and Empirical Based Multivariate Mortality Model

Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong

Abstract:

This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.

Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management

Procedia PDF Downloads 55
21150 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: water inflow, tunnel, discontinues rock, numerical simulation

Procedia PDF Downloads 524
21149 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle

Procedia PDF Downloads 402
21148 Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation

Authors: Noriyoshi Yamauchi, Etsuo Horikawa, Takunori Tsuji

Abstract:

Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control.

Keywords: active matrix sensing, brain machine interface (BMI), the central pattern generator (CPG), myoelectric signal processing, robot rehabilitation

Procedia PDF Downloads 385
21147 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 97
21146 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59
21145 Research on the Cognition and Actual Phenomenon of School Bullying from the Perspective of Students

Authors: Chia-Chun Wu, Yu-Hsien Sung

Abstract:

This study aims to examine the consistency between students’ predictions and their actual observations on the bullying prevalence rate among different types of high-risk victims, thereby clarifying the reliability of students’ reports on the identification of bullying. A total of 1,732 Taiwanese students (734 males and 998 females) participated in this study. A Rasch model was adopted for data analysis. The results showed that students with “personality or behavioral issues” are more likely to be bullied in schools, based on both students’ predictions and actual observations. Moreover, the results differed significantly between genders and between various educational levels in students’ predictions and their actual observations on the bullying prevalence rate of different types of high-risk victims. To summarize, this study not only suggests that students’ reports on the identification of bullying are accurate and could be a valuable reference in terms of recognizing a bullying incident, but it also argues that more attention should be paid to students’ gender and educational level when taking their perspectives into consideration when it comes to identifying bullying behaviors.

Keywords: school bullying, student, bullying recognition, high-risk victims

Procedia PDF Downloads 84
21144 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 361
21143 Governance Challenges for the Management of Water Resources in Agriculture: The Italian Way

Authors: Silvia Baralla, Raffaella Zucaro, Romina Lorenzetti

Abstract:

Water management needs to cope with economic, societal, and environmental changes. This could be guaranteed through 'shifting from government to governance'. In the last decades, it was applied in Europe through and within important legislative pillars (Water Framework Directive and Common Agricultural Policy) and their measures focused on resilience and adaptation to climate change, with particular attention to the creation of synergies among policies and all the actors involved at different levels. Within the climate change context, the agricultural sector can play, through sustainable water management, a leading role for climate-resilient growth and environmental integrity. A recent analysis on the water management governance of different countries identified some common gaps dealing with administrative, policy, information, capacity building, funding, objective, and accountability. The ability of a country to fill these gaps is an essential requirement to make some of the changes requested by Europe, in particular the improvement of the agro-ecosystem resilience to the effect of climatic change, supporting green and digital transitions, and sustainable water use. This research aims to contribute in sharing examples of water governances and related advantages useful to fill the highlighted gaps. Italy has developed a strong and exhaustive model of water governance in order to react with strategic and synergic actions since it is one of the European countries most threatened by climate change and its extreme events (drought, floods). In particular, the Italian water governance model was able to overcome several gaps, specifically as concerns the water use in agriculture, adopting strategies as a systemic/integrated approach, the stakeholder engagement, capacity building, the improvement of planning and monitoring ability, and an adaptive/resilient strategy for funding activities. They were carried out, putting in place regulatory, structural, and management actions. Regulatory actions include both the institution of technical committees grouping together water decision-makers and the elaboration of operative manuals and guidelines by means of a participative and cross-cutting approach. Structural actions deal with the funding of interventions within European and national funds according to the principles of coherence and complementarity. Finally, management actions regard the introduction of operational tools to support decision-makers in order to improve planning and monitoring ability. In particular, two cross-functional and interoperable web databases were introduced: SIGRIAN (National Information System for Water Resources Management in Agriculture) and DANIA (National Database of Investments for Irrigation and the Environment). Their interconnection allows to support sustainable investments, taking into account the compliance about irrigation volumes quantified in SIGRIAN, ensuring a high level of attention on water saving, and monitoring the efficiency of funding. Main positive results from the Italian water governance model deal with a synergic and coordinated work at the national, regional, and local level among institutions, the transparency on water use in agriculture, a deeper understanding from the stakeholder side of the importance of their roles and of their own potential benefits and the capacity to guarantee continuity to this model, through a sensitization process and the combined use of management operational tools.

Keywords: agricultural sustainability, governance model, water management, water policies

Procedia PDF Downloads 117
21142 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping

Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco

Abstract:

Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.

Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction

Procedia PDF Downloads 225
21141 Medical and Dietary Potentials of Mare's Milk in Liver Diseases

Authors: Bakytzhan Bimbetov, Abay Zhangabilov, Saule Aitbaeva, Galymzhan Meirambekov

Abstract:

Mare’s milk (saumal) contains in total about 40 biological components necessary for the human body. The most significant among them are amino acids, fats, carbohydrates, enzymes (lysozyme, amylase), more minerals and vitamins which are well balanced with each other. In Kazakhstan, Company "Eurasia Invest Ltd.” produces a freeze-dried saumal in form of powder by the use of modern German innovative technology by means of evaporating at low temperature (-35°C) with an appropriate pasteurization. Research of freeze-dried biomilk for the qualitative content showed that main ingredients of freshly drown milk are being preserved. We are currently studying medical and dietary properties of freeze-dried mare's milk for diseases of the digestive system, including for nonalcoholic steatohepatitis (NASH) and liver cirrhosis (LC) viral etiology. The studied group consisted of 14 patients with NASH, and 7 patients with LC viral etiology of Class A severity degree as per Child-Pugh. Patients took freeze-dried saumal, preliminary dissolved in boiled warm water (24 g. powder per 200 ml water) 3-4 times a day for a month in conjunction with basic therapy. The results were compared to a control group (11 patients with NASH and LC) who received only basic therapy without mare’s milk. Results of preliminary research showed an improvement of subjective and objective conditions of all patients, but more significant improvement of clinical symptoms and syndromes were observed in the treatment group compared to the control one. Patients with NASH significantly over time compared to the beginning of therapy decreased asthenic and dyspeptic syndromes (p<0,01). Hepatomegaly, identified on the basis of ultrasound prior to treatment was observed in 92,8±2,4% of patients, and after combination therapy hepatomegaly the rate decreased by 14,3%, amounting to 78,5±2,8%. Patients with LC also noted the improvement of asthenic (p<0,01) and dyspeptic (p<0,05) syndromes and hemorrhagic syndrome (nosebleeds and bleeding gums when brushing your teeth, p<0,05), and jaundice. Laboratory study also showed improvement in the research group, but more significant changes were observed in the experimental group. Group of patients with NASH showed a significant improvement of index in cytolysis in conjunction with a combination therapy (p<0,05). In the control group, these indicators were also improved, but they were not statistically reliable (p>0,05). Markers of liver failure were additionally studied during the study of laboratory parameters in patients with liver cirrhosis, in particular, bilirubin, albumin and prothrombin index (PTI). Combined therapy with the use of basic treatment and mare's milk showed a significant improvement in cytolysis and bilirubin (p<0,05). In our opinion, a very important and interesting fact is that, in conjunction with basic therapy, the use of mare's milk revealed an improvement of liver function in the form of normalized PTI and albumin in patients with liver cirrhosis viral etiology. Results of this work have shown therapeutic efficiency of the use of mare's milk in complex treatment of patients with liver disease and require further in-depth study.

Keywords: liver cirrhosis, non-alcohol steatohepatitis, saumal, mare’s milk

Procedia PDF Downloads 227
21140 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 44
21139 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
21138 Dynamic Modeling of Orthotropic Cracked Materials by X-FEM

Authors: S. Houcine Habib, B. Elkhalil Hachi, Mohamed Guesmi, Mohamed Haboussi

Abstract:

In this paper, dynamic fracture behaviors of cracked orthotropic structure are modeled using extended finite element method (X-FEM). In this approach, the finite element method model is first created and then enriched by special orthotropic crack tip enrichments and Heaviside functions in the framework of partition of unity. The mixed mode stress intensity factor (SIF) is computed using the interaction integral technique based on J-integral in order to predict cracking behavior of the structure. The developments of these procedures are programmed and introduced in a self-software platform code. To assess the accuracy of the developed code, results obtained by the proposed method are compared with those of literature.

Keywords: X-FEM, composites, stress intensity factor, crack, dynamic orthotropic behavior

Procedia PDF Downloads 570
21137 The Relationship between Celebrity Worship and Religiosity: A Study in Turkish Context

Authors: Saadet Taşyürek Demirel, Halide Sena Koçyiğit, Rümeysa Fatma Çetin

Abstract:

Celebrity worship, characterized by excessive admiration and devotion towards public figures, often mirrors elements of religious fervor. This study delves into the intricate connection between celebrity worship and religiosity, particularly within the Turkish cultural context, where Islamic values predominantly shape societal norms. The investigation involves the adaptation of the Celebrity Attitude Scale into Turkish and scrutinizes the interplay between young individuals' religiosity and their extreme adulation of celebrities. Additionally, the study explores potential moderating factors, such as age and gender, that might influence this relationship. A cohort of 197 young adults, aged 19 to 30, participated in this research, responding to self-administered questionnaires that assessed their attitudes towards celebrities using the adapted Celebrity Attitude Scale, along with their self-reported religiosity. The anticipated relationship between religiosity and celebrity worship is hypothesized to exhibit a non-linear pattern. Specifically, we expect religiosity to positively predict celebrity worship tendencies among individuals with minimal to moderate religiosity levels. Conversely, a negative association between religiosity and celebrity worship is expected to manifest among participants exhibiting moderate to high levels of religiosity. The findings of this study will contribute to the comprehension of the intricate dynamics between celebrity worship and religiosity, offering insights specifically within the Turkish cultural context. By shedding light on this relationship, the study aims to enhance our understanding of the multifaceted influences that shape individuals' perceptions and behaviors towards both celebrities and religious inclinations. Methodology of the study: A quantitative research will be conducted, where the factor analysis and correlational method will be used. The factor structure of the scale will be determined with exploratory and confirmatory factor analysis. The reliability, internal consistency, Objectives of the study: This study examines the relationship between religiosity and celebrity worship by young adults in the Turkish context. The other aim of the study is to assess the Turkish validity and reliability of the Celebrity Attitude Scale and contribute it to the literature. Main Contributions of the study: The study aims to introduce celebrity worship to Turkish literature, assess the Celebrity Attitude Scale's reliability in a Turkish sample, explore manifestations of celebrity worship, and examine its link to religiosity. This research addresses the lack of Turkish sources on celebrity worship and extends understanding of the concept.

Keywords: celebrity, worship, religiosity, god

Procedia PDF Downloads 83
21136 Dry Needling Treatment in 38 Cases of Chronic Sleep Disturbance

Authors: P. Gao, Z. Q. Li, Y. G. Jin

Abstract:

In the past 10 years, computers and cellphones have become one of the most important factors in our lives, and one which has a tremendously negative impact on our muscles. Muscle tension may be one of the causes of sleep disturbance. Tension in the shoulders and neck can affect blood circulation to the muscles. This research uses a dry needling treatment to reduce muscle tension in order to determine if the strain in the head and shoulders can influence sleep duration. All 38 patients taking part in the testing suffered from tinnitus and have been experiencing disturbed sleep for at least one to five years. Even after undergoing drug therapy treatments and traditional acupuncture therapies, their sleep disturbances have not shown any improvement. After five to 10 dry needling treatments, 24 of the patients reported an improvement in their sleep duration. Five patients considered themselves to be completely recovered, while 12 patients experienced no improvement. This study investigated these pathogenic and therapeutic problems. The standard treatment for sleep disturbances is drug-based therapy; the results of most standard treatments are unfortunately negative. The result of this clinical research has demonstrated that: The possible cause of sleep disturbance for a lot of patients is the result of tensions in the neck and shoulder muscles. Blood circulation to those muscles is also influenced by the duration of sleep. Hypertonic neck and shoulder muscles are considered to impact sleeping patterns and lead to disturbed sleep. Poor posture, often adopted while speaking on the phone, is one of the main causes of hypertonic neck and shoulder muscle problems. The dry needling treatment specifically focuses on the release of muscle tension.

Keywords: dry needling, muscle tension, sleep duration, hypertonic muscles

Procedia PDF Downloads 245
21135 Data Quality and Associated Factors on Regular Immunization Programme at Ararso District: Somali Region- Ethiopia

Authors: Eyob Seife, Molla Alemayaehu, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew

Abstract:

Globally, immunization averts between 2 and 3 million deaths yearly, but Vaccine-Preventable Diseases still account for more in Sub-Saharan African countries and takes the majority of under-five deaths yearly, which indicates the need for consistent and on-time information to have evidence-based decision so as to save lives of these vulnerable groups. However, ensuring data of sufficient quality and promoting an information-use culture at the point of collection remains critical and challenging, especially in remote areas where the Ararso district is selected based on a hypothesis of there is a difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Ararso district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers and reporting documents were reviewed at 4 health facilities (1 health center and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio, availability and timeliness of reports. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and at the district health office. A quality index (QI), availability and timeliness of reports were assessed. Accuracy ratios formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), TT2+ and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed poor timeliness at all levels and both over-reporting and under-reporting were observed at all levels when computing the accuracy ratio of registration to health post reports found at health centers for almost all antigens verified. A quality index (QI) of all facilities also showed poor results. Most of the verified immunization data accuracy ratios were found to be relatively better than that of quality index and timeliness of reports. So attention should be given to improving the capacity of staff, timeliness of reports and quality of monitoring system components, namely recording, reporting, archiving, data analysis and using information for decisions at all levels, especially in remote and areas.

Keywords: accuracy ratio, ararso district, quality of monitoring system, regular immunization program, timeliness of reports, Somali region-Ethiopia

Procedia PDF Downloads 72
21134 Assessment of Music Performance Anxiety in Portuguese Children and Adolescents

Authors: Pedro Dias, Lurdes Verissimo, Maria Joao Baptista, Ana Pinheiro, Patricia Oliveira-Silva, Sofia Serra, Daniela Coimbra

Abstract:

To achieve a high standard in performance, a musician must be well in all aspects of health (physical, mental and social). Anxiety in performance is related to the high level of coordination and skill needed in performance, as well as to the public evaluation of the performer. It affects some key elements of performance, such as concentration, memory, motor coordination, and relaxation. This work presents two studies focused on the adaptation and evaluation of the psychometric properties of the Music Performance Anxiety Inventory (MPAI-A) in young Portuguese music students. The first study was conducted with a sample of 161 adolescent music students, who responded to the Portuguese version of this instrument, and to the State-Trait Anxiety Inventory for Children (STAIC-c2). Validity and reliability were examined, and this measure revealed robust psychometric properties in this sample. The second study aimed to adapt the MPAI to a younger population (one hundred 8-10 years-old music students). Again, the MPAI and the STAIC c-2 were used in this study. Exploratory factor analysis, correlations, and internal consistency were used to evaluate the final children version of the instrument (MPAI-C), presenting a different factor structure compared to the adolescent version (10 items organized in 2 factors) and high levels of reliability and convergent validity.

Keywords: anxiety, assessment, children and adolescents, music performance

Procedia PDF Downloads 190
21133 Neuroprotective Effect of Crocus sativus against Cerebral Ischemia in Rats

Authors: Rehab F. Abdel-Rahman, Sally A. El Awdan, Rehab R. Hegazy, Dina F. Mansour, Hanan A. Ogaly, Marwan Abdelbaset

Abstract:

Disorders of the cerebral circulation are the leading cause of numerous neurological and psychiatric illnesses. The transient middle cerebral artery occlusion model (MCAO) is considered to be a reliable and reproducible rodent model of cerebral ischemia. The purpose of the current study was to examine the neuroprotective effects of Crocus sativus (saffron) in a rat model of left middle cerebral artery MCAO. Male Wistar rats were anesthetized and subjected to 1 h of MCAO followed by 48 h reperfusion or sham surgery. One group of the ischemia operated animals was kept as left brain ischemia/reperfusion (I/R). Another 2 operated groups received saffron extract (100 or 200 mg/kg, i.p) four times (60 min before the surgery, during the surgery, and on days 1 and 2 after the occlusion). During the experiment, behavioral tests were performed. After 72 h the animals were euthanized and their left brain hemispheres were used in the biochemical, histopathological, and immunohistochemical studies. Saffron administration revealed an improvement in I/R-induced alteration of locomotor balance and coordination ability of rats. Moreover, saffron decreased the brain content of malondialdehyde, nitric oxide, brain natriuretic peptide and vascular endothelial growth factor with significant increase of reduced glutathione. Immunohistochemical evaluation of caspase-3 and Bax protein expression revealed reduction in I/R-enhanced apoptosis in saffron treated rats. In conclusion, saffron treatment decreases ischemic brain injury in association with inhibition of apoptotic and oxidative cell death in a dose dependent manner.

Keywords: caspase-3, cerebral ischemia, Crocus sativus, rats, vascular endothelial growth factor

Procedia PDF Downloads 258
21132 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 15
21131 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 292
21130 Major Histocompatibility Complex (MHC) Polymorphism and Disease Resistance

Authors: Oya Bulut, Oguzhan Avci, Zafer Bulut, Atilla Simsek

Abstract:

Livestock breeders have focused on the improvement of production traits with little or no attention for improvement of disease resistance traits. In order to determine the association between the genetic structure of the individual gene loci with possibility of the occurrence and the development of diseases, MHC (major histocompatibility complex) are frequently used. Because of their importance in the immune system, MHC locus is considered as candidate genes for resistance/susceptibility against to different diseases. Major histocompatibility complex (MHC) molecules play a critical role in both innate and adaptive immunity and have been considered candidate molecular markers of an association between polymorphisms and resistance/susceptibility to diseases. The purpose of this study is to give some information about MHC genes become an important area of study in recent years in terms of animal husbandry and determine the relation between MHC genes and resistance/susceptibility to disease.

Keywords: MHC, polymorphism, disease, resistance

Procedia PDF Downloads 631
21129 Soil Improvement through Utilization of Calcifying Bhargavaea cecembensis N1 in an Affordable Whey Culture Medium

Authors: Fatemeh Elmi, Zahra Etemadifar

Abstract:

Improvement of soil mechanical properties is crucial before its use in construction, as the low mechanical strength and unstable structure of soil in many parts of the world can lead to the destruction of engineering infrastructure, resulting in financial and human losses. Although, conventional methods, such as chemical injection, are often utilized to enhance soil strength and stiffness, they are generally expensive, require heavy machinery, and cause significant environmental effects due to chemical usage, and also disrupt urban infrastructure. Moreover, they are not suitable for treating large volume of soil. Recently, an alternative method to improve various soil properties, including strength, hardness, and permeability, has received much attention: the application of biological methods. One of the most widely used is biocementation, which is based on the microbial precipitation of calcium carbonte crystalls using ureolytic bacteria However, there are still limitations to its large-scale use that need to be resolved before it can be commercialized. These issues have not received enough attention in prior research. One limitation of MICP (microbially induced calcium carbonate precipitation) is that microorganisms cannot operate effectively in harsh and variable environments, unlike the controlled conditions of a laboratory. Another limitation of applying this technique on a large scale is the high cost of producing a substantial amount of bacterial culture and reagents required for soil treatment. Therefore, the purpose of the present study was to investigate soil improvement using the biocementation activity of poly-extremophile, calcium carbonate crystal- producing bacterial strain, Bhargavaea cecembensis N1, in whey as an inexpensive medium. This strain was isolated and molecularly identified from sandy soils in our previous research, and its 16S rRNA gene sequences was deposited in the NCBI Gene Bank with an accession number MK420385. This strain exhibited a high level of urease activity (8.16 U/ml) and produced a large amount of calcium carbonate (4.1 mg/ ml). It was able to improve the soil by increasing the compressive strength up to 205 kPa and reducing permeability by 36%, with 20% of the improvement attributable of calcium carbonate production. This was achieved using this strain in a whey culture medium. This strain can be an eco-friendly and economical alternative to conventional methods in soil stabilization, and other MICP related applications.

Keywords: biocementation, Bhargavaea cecembensis, soil improvement, whey culture medium

Procedia PDF Downloads 54
21128 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 106
21127 A Look into Surgical Site Infections: Impact of Collective Interventions

Authors: Lisa Bennett, Cynthia Walters, Cynthia Argani, Andy Satin, Geeta Sood, Kerri Huber, Lisa Grubb, Woodrow Noble, Melissa Eichelberger, Darlene Zinalabedini, Eric Ausby, Jeffrey Snyder, Kevin Kirchoff

Abstract:

Background: Surgical site infections (SSIs) within the obstetric population pose a variety of complications, creating clinical and personal challenges for the new mother and her neonate during the postpartum period. Our journey to achieve compliance with the SSI core measure for cesarean sections revealed many opportunities to improve these outcomes. Objective: Achieve and sustain core measure compliance keeping surgical site infection rates below the national benchmark pooled mean of 1.8% in post-operative patients, who delivered via cesarean section at the Johns Hopkins Bayview Medical Center. Methods: A root cause analysis was performed and revealed several environmental, pharmacologic, and clinical practice opportunities for improvement. A multidisciplinary approach led by the OB Safety Nurse, OB Medical Director, and Infectious Disease Department resulted in the implementation of fourteen interventions over a twenty-month period. Interventions included: post-operative dressing changes, standardizing operating room attire, broadening pre-operative antibiotics, initiating vaginal preps, improving operating room terminal cleaning, testing air quality, and re-educating scrub technicians on technique. Results: Prior to the implementation of our interventions, the SSI quarterly rate in Obstetrics peaked at 6.10%. Although no single intervention resulted in dramatic improvement, after implementation of all fourteen interventions, the quarterly SSI rate has subsequently ranged from to 0.0% to 2.70%. Significance: Taking an introspective look at current practices can reveal opportunities for improvement which previously were not considered. Collectively the benefit of these interventions has shown a significant decrease in surgical site infection rates. The impact of this quality improvement project highlights the synergy created when members of the multidisciplinary team work in collaboration to improve patient safety, and achieve a high quality of care.

Keywords: cesarean section, surgical site infection, collaboration and teamwork, patient safety, quality improvement

Procedia PDF Downloads 482
21126 How Much the Role of Fertilizers Management and Wheat Planting Methods on Its Yield Improvement?

Authors: Ebrahim Izadi-Darbandi, Masoud Azad, Masumeh Dehghan

Abstract:

In order to study the effects of nitrogen and phosphoruse management and wheat sowing method on wheat yield, two experiments was performed as factorial, based on completely randomized design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in 2009. In the first experiment nitrogen application rates (100kg ha-1, 200 kg ha-1, 300 kg ha-1), phosphorus application rates (100 kg ha-1, 200 kg ha-1) and two levels of their application methods (Broadcast and Band) were studied. The second experiment treatments included of wheat sowing methods (single-row with 30 cm distance and twine row on 60 cm width ridges), as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots (150 kg ha-1). Phosphorus and nitrogen sources for fertilization at both experiment were respectively super phosphate, applied before wheat sowing and incorporated with soil and urea, applied in two phases (50% pre plant) and (50%) near wheat shooting. Results from first experiment showed that the effect of fertilizers application methods were significant (p≤0.01) on wheat yield increasing. Band application of phosphorus and nitrogen were increased biomass and seed yield of wheat with nine and 15% respectively compared to their broadcast application. The interaction between the effects of nitrogen and phosphorus application rate with phosphorus and nitrogen application methods, showed that band application of fertilizers and the rate of application of 200kg/ha phosphorus and 300kg/ha nitrogen were the best methods in wheat yield improvement. The second experiment also showed that the effect of wheat sowing method and fertilizers application methods were significant (p≤0.01) on wheat seed and biomass yield improvement. Wheat twine row on 60 cm width ridges sowing method, increased its biomass and seed yield for 22% and 30% respectively compared to single-row with 30 cm. Wheat sowing method and fertilizers application methods interaction indicated that band application of fertilizers and wheat twine row on 60 cm width ridges sowing method was the best treatment on winter wheat yield improvement. In conclusion these results indicated that nitrogen and phosphorus management in wheat and modifying wheat sowing method have important role in increasing fertilizers use efficiency.

Keywords: band application, broadcast application, rate of fertilizer application, wheat seed yield, wheat biomass yield

Procedia PDF Downloads 464
21125 Findings from an Access Improvement Project for Antiretroviral Therapy Uptake through Traditional Birth Attendants at Mother Theresa Hospital, Lagos, Nigeria

Authors: Daniel Afolayan, Christina Olawepo, Francis Olowookanga, Nguhemen Tingir, Olawale Fadare, John Oko

Abstract:

In Nigeria, traditional birth attendants (TBAs) can play an important role in the prevention of mother-to-child transmission of HIV. However, their role in improving access to antiretroviral therapy (ART) is unclear. Catholic Caritas Foundation of Nigeria (Caritas Nigeria) is an implementing agency supporting increased access to HIV testing and treatment services in Lagos state through health facilities including Mother Theresa Hospital. Despite intra-facility testing and community outreaches, ART uptake at Mother Theresa Hospital, Lagos was low with 6 individuals on antiretroviral drugs 3 months post-activation. This study explored improving access to ART through linkages with TBAs for ART uptake at the facility. Plan-Do-Study-Act model was used. The goal was to improve uptake of ART from 6 to 80 in 5 months (end of project year). Scanning revealed a network of 15 TBAs with potential as satellites for HIV testing. Caritas Nigeria linked the facility with 15 TBAs who were provided with HIV test kits and trained on HIV testing services for provider-initiated testing and outreaches. Weekly reports and referrals of positives were received, tracked and feedback given on testing yield. These TBAs serve individuals of various age and gender at their trado-medical centres. At the end of 5 months, HIV testing increased by 10,575 (78% from TBAs) and HIV positives obtained improved by 77 (44.2% from TBAs). 55 new individuals were enrolled and commenced on ART (61.8% from TBAs). There was a successful linkage of all clients with escort services due to incentives. Total uptake of ART was 61 (76.3% of target). Structured partnerships between TBAs and HIV care and treatment centers should be strengthened to improve access to ART.

Keywords: access improvement, antiretroviral therapy, traditional birth attendants, uptake

Procedia PDF Downloads 460