Search results for: organic compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4236

Search results for: organic compounds

1836 Antioxidant and Antimicrobial Properties of Twenty Medicinal Plants

Authors: S. Krimat, T. Dob, L. Lamari, H. Metidji

Abstract:

The aim of this study is to evaluate the antioxidant and antimicrobial activity of hydromethanolic extract of selected Algerian medicinal flora. The antioxidant activity of extract was evaluated in terms of radical scavenging potential (DPPH) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was tested against five microorganisms Pseu-domonas aeruginosa Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Candida albicans. The results showed that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50 = 4.60 μg/ml), while Populus trimula had the highest antioxidant activity in β-carotene/linolaic acid assay. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. The results indicate that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

Keywords: Algerian medicinal plants, antimicrobial activity, antioxidant activity, disc diffusion method

Procedia PDF Downloads 328
1835 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 244
1834 Petai Chips as an Antioxidant Chips from Indonesia

Authors: R. S. Fisca, Y. R. Elox, L. Umi, U. Z. Luttfia, Kun Harismah

Abstract:

Petai (Parkia speciosa) is a plant indigenous to Southeast Asia. It is consumed either raw or cooked. It has been used in folk medicine to treat diabetes, hypertension, and kidney problems. It contains minerals and vitamins. Petai contains a lot of chemical compounds that are beneficial for health, including antioxidants, Vitamin B6 0,9mg, energy 142 g. cal, 10.4 g protein. 2 g fat, 22 g carbohydrates, 95 mg calcium, phosphorus 115 mg, 1 mg iron, 200 IU of vitamin A, vitamin B1 0.17 mg, 36 mg of vitamin C that can resolve various health problems. These chips are the result of innovation from petai packaged in such a way becomes a tasty snack chips and can be enjoyed by many people to relax and also nutritious for health. In the manufacture of petai chips require several steps of them start by boiling, flating, drying and the last frying. In introducing the products widely we sell petai chips with several methods. Some of these methods include direct sales, delivery order, online/social media, and open some booth at a few places and the car free day in Solo every sunday. Opportunity in selling petai chips is very wide because there is no competitors with similar business. With the innovation of petai chips become healthy snacks can be introduced to the public and can even be exported out of the country as one of the extraordinary snacks from Indonesia.

Keywords: antioxidants, chips, healty, petai

Procedia PDF Downloads 547
1833 Testicular Differential MicroRNA Expression Derived Occupational Risk Factor Assessment in Idiopathic Non-obstructive Azoospermia Cases

Authors: Nisha Sharma, Mili Kaur, Ashutosh Halder, Seema Kaushal, Manoj Kumar, Manish Jain

Abstract:

Purpose: To investigate microRNAs (miRNA) as an epigenomic etiological factor in idiopathic non-obstructive azoospermia (NOA). In order to achieve the same, an association was seen between occupational exposure to radiation, thermal, and chemical factors and idiopathic cases of non-obstructive azoospermia, and later, testicular differential miRNA expression profiling was done in exposure group NOA cases. Method: It is a prospective study in which 200 apparent idiopathic male factor infertility cases, who have been advised to undergo testicular fine needle aspiration (FNA) evaluation, are recruited. A detailed occupational history was taken to understand the possible type of exposure due to the nature and duration of work. A total of 26 patients were excluded upon XY-FISH and Yq microdeletion tests due to the presence of genetic causes of infertility, 6 hypospermatogeneis (HS), six Sertoli cell-only syndrome (SCOS), and six normospermatogeneis patients testicular FNA samples were used for RNA isolation followed by small RNA sequencing and nCounter miRNA expression analysis. Differential miRNA expression profile of HS and SCOS patients was done. A web-based tool, miRNet, was used to predict the interacting compounds or chemicals using the shortlisted miRNAs with high fold change. The major limitation encountered in this study was the insufficient quantity of testicular FNA sample used for total RNA isolation, which resulted in a low yield and RNA integrity number (RIN) value. Therefore, the number of RNA samples admissible for differential miRNA expression analysis was very small in comparison to the total number of patients recruited. Results: Differential expression analysis revealed 69 down-regulated and 40 up-regulated miRNAs in HS and 66 down-regulated and 33 up-regulated miRNAs in SCOS in comparison to normospermatogenesis controls. The miRNA interaction analysis using the miRNet tool showed that the differential expression profiles of HS and SCOS patients were associated with arsenic trioxide, bisphenol-A, calcium sulphate, lithium, and cadmium. These compounds are reproductive toxins and might be responsible for miRNA-mediated epigenetic deregulation leading to NOA. The association between occupational risk factor exposure and the non-exposure group of NOA patients was not statistically significant, with ꭓ2 (3, N= 178) = 6.70, p= 0.082. The association between individual exposure groups (radiation, thermal, and chemical) and various sub-types of NOA is also not significant, with ꭓ2 (9, N= 178) = 15.06, p= 0.089. Functional analysis of HS and SCOS patients' miRNA profiles revealed some important miR-family members in terms of male fertility. The miR-181 family plays a role in the differentiation of spermatogonia and spermatocytes, as well as the transcriptional regulation of haploid germ cells. The miR-34 family is expressed in spermatocytes and round spermatids and is involved in the regulation of SSCs differentiation. Conclusion: The reproductive toxins might adopt the miRNA-mediated mechanism of disease development in idiopathic cases of NOA. Chemical compound induced; miRNA-mediated epigenetic deregulation can give a future perspective on the etiopathogenesis of the disease.

Keywords: microRNA, non-obstructive azoospermia (NOA), occupational exposure, hypospermatogenesis (HS), Sertoli cell only syndrome (SCOS)

Procedia PDF Downloads 70
1832 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 157
1831 Antimicrobial Effect of Natamycin against Food Spoilage Fungi and Yeast Contaminated Fermented Foods

Authors: Pervin Basaran Akocak

Abstract:

Food antimicrobials are compounds that are incorporated into food matrixes in order to cause death or delay the growth of spoilage or pathogenic microorganisms. As a result, microbiological deterioration is prevented throughout storage and food distribution. In this study, the effect of natural antimycotic natamycin (C33H47NO13, with a molecular mass of 665.725), a GRAS (Generally Recognized As Safe) commercial compound produced by different strains of Streptomyces sp., was tested against various fermented food contamination fungi and yeast species. At the concentration of 100 µg/ml, natamycin exhibited stronger antifungal activity against fungi than yeast species tested. The exposure time of natamycin for complete inhibition of the species tested were found to be between 100-180 min at 300-750 µg/ml concentration. SEM observations of fungal species demonstrated that natamycin distorted and damaged the conidia and hyphae by inhibiting spore germination and mycelial growth. Natamycin can be considered as a potential candidate in hurdle food treatments for preventing fungal and yeast invasion and resulting deterioration of fermented products.

Keywords: natamycin, antifungal, fermented food, food spoilage fungi

Procedia PDF Downloads 499
1830 Mass Transfer in Reactor with Magnetic Field Generator

Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas

Abstract:

The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process.

Keywords: mass transfer, oscillating magnetic field, rotating magnetic field, static magnetic field

Procedia PDF Downloads 188
1829 Single-Section Fermentation Reactor with Cellular Mixing System

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

This publication presents a reactor designed for methane fermentation of organic substrates. The design is based on rotating cellular cylinders connected to a biomass feeder and an ultrasonic generator. This allows for simultaneous mixing and partial disintegration of the biomass, as well as stimulating higher metabolic rates within the microorganisms. Such a design allows from 2-fold to 14-fold reduction of power usage when compared to conventional mixing systems. The sludge does not undergo mechanical deformation during the mixing process, which improves substrate biodegradation efficiency by 10-15%. Cavitation occurs near the surface of the rods, partially releasing the biomass and separating it from the destroyed microorganisms. Biogas is released further away from the cellular cylinder rods due to the effect of the ultrasonic waves, in addition to increased biochemical activity of the microorganisms and increased exchange of the nutrient medium with metabolic products, which results in biogas production increase by about 15%.

Keywords: methane fermentation, bioreactors, biomass, mixing system

Procedia PDF Downloads 510
1828 A Study on the Synthesis and Antioxidant Activity of Hybrid Pyrazoline Integrated with Pyrazole and Thiazole Nuclei

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Pyrazole is an aromatic five-membered heterocycle with two nitrogen and three carbon atoms in its ring structure. According to the literature, pyrazoline, pyrazole, and thiazole-containing moieties are found in various drug structures and are responsible for nearly all pharmacological effects. The pyrazoline linked to pyrazole moiety carbothioamides was synthesized via the reaction of pyrazole-bearing chalcones (3-(5-chloro-3-methyl-¹-phenyl-1H-pyrazol-4-yl)-¹-(substituted aryl) prop-2-ene-¹-one derivatives) with a nucleophile thiosemicarbohyrazide by heating in ethanol using fused sodium acetate as a catalyst. Then the carbothioamide derivatives were converted into the pyrazoline hybrid to pyrazole and thiazole derivatives by condensing with substituted phenacyl bromide in alcohol in a basic medium. Next, the chemical structure of the newly synthesized molecules was confirmed by IR, 1H-NMR, and mass spectral data. Further, they were screened for their in vitro antioxidant activity. Compared to butylated hydroxy anisole (BHA)., the antioxidant data showed that the synthesized compounds had good to moderate activity.

Keywords: pyrazoline-pyrazole carbothioamide derivatives, pyrazoline-pyrazole-thiazole derivatives, spectral studies, antioxidant activity

Procedia PDF Downloads 57
1827 Barrier Lowering in Contacts between Graphene and Semiconductor Materials

Authors: Zhipeng Dong, Jing Guo

Abstract:

Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.

Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts

Procedia PDF Downloads 286
1826 Nitrate Removal from Drinking Water Using Modified Natural Nanozeolite

Authors: T. Meftah, M. M. Zerafat, S. Sabbaghi

Abstract:

Nitrate compounds are considered as groundwater contaminants, the concentration of which has been growing in these resources during recent years. As a result, it seems necessary to use effective methods to remove nitrate from water and wastewater. Adsorption process is generally considered more economical in water treatment. Natural clinoptilolite zeolite is one of the best absorbents because of its high capacity and low cost.In this research, we are going to modify zeolite nanoparticles as a chemical modification. Zeolite nanoparticles have been modified with a kind of organosilane, like 3-aminopropyltriethoxysilane. The advantage of this modification method, in comparison with physical modification, is the good stability in various environmental conditions. In this research, absorbent properties have been analyzed by PSA, FTIR and CHN elemental analysis. Also, nitrate adsorption by modified nanoparticles was examined by UV-Vis spectroscopy. There would be 〖NH〗_2 groups on the zeolite surface as a result of organosilane modification. In order to adsorption of nitrate, we need to convert 〖NH〗_2 groups to〖NH〗_4^+, that it is possible in acidic condition. As a result, the best nitrate removal is possible in the lowest concentration and pH. We obtained 80.12% nitrate removal in pH=3 and 50 mg⁄l nitrate concentration and 4 g⁄l absorbent optimum concentration.

Keywords: nitrate removal, zeolite, surface modification, organosilane

Procedia PDF Downloads 478
1825 Identification of Target Receptor Compound 10,11-Dihidroerisodin as an Anti-Cancer Candidate

Authors: Srie Rezeki Nur Endah, Richa Mardianingrum

Abstract:

Cancer is one of the most feared diseases and is considered the leading cause of death worldwide. Generally, cancer drugs are synthetic drugs with relatively more expensive prices and have harmful side effects, so many people turn to traditional medicine, for example by utilizing herbal medicine. Erythrina poeppigiana is one of the plants that can be used as a medicinal plant containing 10,11-dihidroerisodin compounds that are useful anticancer etnofarmakologi. The purpose of this study was to identify the target of 10,11 dihydroerisodin receptor compound as in silico anticancer candidate. The pure isolate was tested physicochemically by MS (Mass Spectrometry), UV-Vis (Ultraviolet – Visible), IR (Infra Red), 13C-NMR (Carbon-13 Nuclear Magnetic Resonance), 1H-NMR (Hydrogen-1 Nuclear Magnetic Resonance), to obtain the structure of 10,11-dihydroerisodin alkaloid compound then identified to target receptors in silico. From the results of the study, it was found that 10,11-dihydroerisodin compound can work on the Serine / threonine-protein kinase Chk1 receptor that serves as an anti-cancer candidate.

Keywords: anti-cancer, Erythrina poeppigiana, target receptor, 10, 11- dihidroerisodin

Procedia PDF Downloads 234
1824 Morphological and Molecular Identification of Endophytic Colletotrichum Species from Medicinal Plants and Their Antimicrobial Potential

Authors: Gauravi Agarkar, Mahendra Rai

Abstract:

Endophytic fungi from medicinal plants are important source of numerous pharmacologically important compounds. In the present investigation, the endophytic fungi were isolated from three medicinal plants; Andrographis paniculata, Rauwolfia serpentina and Tridax procumbens. Endophytic Colletotrichum sp. were identified on the basis of cultural and morphological characteristics as well as internal transcribed spacer (ITS) sequence analysis. Antibacterial and antifungal activity of the ethyl acetate and methanol extract of endophytic Colletotrichum sp. was evaluated against seven different human pathogenic bacteria and six Candida sp. The extracts were effective and showed significant activity against all the test pathogens. In case of yeast Candida, the combined effect of extracts and standard antibiotic was enhanced greatly showing synergistic activity. Further, the extracts were assayed for Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC) where, MIC values were in the range of 100-250 μg/ml. These results suggest that the endophytic Colletotrichum sp. isolated from the medicinal plants are capable of producing promising antimicrobial metabolites.

Keywords: antimicrobial, colletotrichum, endophytic fungi, medicinal plants

Procedia PDF Downloads 545
1823 Synthesis and Antibacterial Evaluation of Natural Bioactive 3,4-DihydroisocoumarinAnalogues

Authors: Hummera Rafique, Aamer Saeed

Abstract:

Synthesis of structural analogues of various well known bioactive natural 3,4-dihydroisocoumarins viz. Scorzocreticin, Annulatomarin, Montroumarin, and Thunberginol B, have been carried out starting from 3,5-dimethoxy-4-methylphenyl acetic acid. 3,5-Dimethoxy-4-methylphenyl acetic acid was then condensed with various aryl acid chlorides (a-e) to afford the corresponding 6,8-dimethoxy-7-methyl-3-aryl isocoumarins (5a-e). The alkaline hydrolysis of isocoumarins yields keto-acids (3a-e), which were then reduced to hydroxyacids, followed by cyclodehydration with acetic anhydride furnish corresponding 3,4-dihydroisocoumarins (7a-e). Finally, demethylation of 3,4-dihydroisocoumarins was carried out to afford 6,8-dihydroxy-7-methyl-3-aryl-3,4-dihydroisocoumarins (7a-e). Antibacterial evaluation of all the synthesized compounds were carried out against ten bacterial strains, it was concluded that isocoumarins (5a-e) and 3,4-dihydroisocoumarins (7a-e) are more active against gram positive bacteria then gram negative. However, the 6,8-dihydroxy-3,4-dihydroisocoumarin derivatives (8a-e) are more active against gram negative then gram positive.

Keywords: 3, 5-Dimethoxy-4-methylhomophthalic acid, natural 3, 4-Dihydroisocoumarin analogues, antibacterial activity, isocoumarins, demethylation

Procedia PDF Downloads 391
1822 Determination of Full Energy Peak Efficiency and Resolution of Nai (Tl) Detector Using Gamma-ray Spectroscopy

Authors: Jibon Sharma, Alakjyoti Patowary, Moirangthem Nara Singh

Abstract:

In experimental research it is very much essential to obtain the quality control of the system used for the experiment. NaI (Tl) scintillation detector is the most commonly used in radiation and medical physics for measurement of the gamma ray activity of various samples. In addition, the scintillation detector has a lot of applications in the elemental analysis of various compounds, alloys using activation analysis. In each application for quantitative analysis, it is very much essential to know the detection efficiency and resolution for different gamma energies. In this work, the energy dependence of efficiency and resolution of NaI (Tl) detector using gamma-ray spectroscopy are investigated. Different photon energies of 356.01 keV,511keV,661.60keV,1170 keV,1274.53 keV and 1330 keV are obtained from four radioactive sources (133Ba,22Na,137Cs and 60 Co) used in these studies. Values of full energy peak efficiencies of these gamma energies are found to be respectively 58.46%,10.15%,14.39%,1.4%,3.27% and 1.31%. The values of percent resolution for above different gamma ray energies are found to be 11.27%,7.27%,6.38%,5.17%,4.86% and 4.74% respectively. It was found that the efficiency of the detector exponentially decreases with energy and the resolution of the detector is directly proportional to the energy of gamma-ray.

Keywords: naI (Tl) gamma-ray spectrometer, resolution, full energy peak efficiency, radioactive sources

Procedia PDF Downloads 91
1821 Phytochemical and Antioxidant Activity Test of Water Fraction Extract of Sisik Naga (Drymoglossum piloselloides) Leaves

Authors: Afifah Nur Aini, Elsa Mega Suryani, Betty Lukiaty

Abstract:

Drymoglossum piloselloides or more commonly known as sisik naga fern is a member of Polipodiaceae Family that is abundant and widely distributed in nature. That being said, there hasn’t been many studies reporting about the benefits of this fern. The aim of this study was to find out the active compounds and antioxidant activity of water fraction extract of sisik naga leaves. The study will be able to optimize the use of this fern in the future. In this study, phytochemical test was done qualitatively by using Mayer, Dragendorff and Wagner reagent for alkaloid test; FeCl3 for phenolic test; Shinoda test for flavonoid; Liebermann-Burchard test for triterprnoid and Forth test for saponin. Antioxidant activity test was done by using 20D spectronic spectrophotometer to determine the percentage of DPPH free radical inhibition. The results showed that water fraction extract of sisik naga leaves contain phenolic and IC50 = 5.44 μg/ml. This means that sisik naga leaves can be used as an antioxidant.

Keywords: antioxidant activity test, dpph, phytochemical test, drymoglossum piloselloides

Procedia PDF Downloads 886
1820 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal

Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures

Keywords: greenhouse, climate change, CO2 capturing, green algae

Procedia PDF Downloads 322
1819 Shift Work and Its Consequences

Authors: Parastoo Vasli

Abstract:

In today's society, more and more people work during ‘non-standard’ working hours, including shift and night work, which are perceived danger factors for health, safety, and social prosperity. Appropriate preventive and protective measures are needed to reduce side effects and ensure that the worker can adapt sufficiently. Of the many health effects associated with shift work, sleep disorders are the most widely recognized. The most troubling acute symptoms are difficulty falling asleep, short sleep, and drowsiness during working hours that last for days on end. The outcomes checked on plainly exhibit that shift work is related to expanded mental, social, and physiological drowsiness. Apparently, the effects are due to circadian and hemostatic compounds (sleep loss). Drowsiness is especially evident during night shifts and may lead to drowsiness in real workplace accidents. In some occupations, this is clearly a risk that could endanger human lives and has enormous financial outcomes. These dangers clearly affect a large number of people and should be of great importance to society. In particular, safety on night shifts is consistently reduced.

Keywords: shift work, night work, safety, health, drowsiness

Procedia PDF Downloads 207
1818 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 46
1817 Synthesis of Silver Powders Destined for Conductive Paste Metallization of Solar Cells Using Butyl-Carbitol and Butyl-Carbitol Acetate Chemical Reduction

Authors: N. Moudir, N. Moulai-Mostefa, Y. Boukennous, I. Bozetine, N. Kamel, D. Moudir

Abstract:

the study focuses on a novel process of silver powders synthesis for the preparation of conductive pastes used for solar cells metalization. Butyl-Carbitol and butyl-carbitol Acetate have been used as solvents and reducing agents of silver nitrate (AgNO3) as precursor to get silver powders. XRD characterization revealed silver powders with a cubic crystal system. SEM micro graphs showed spherical morphology of the particles. Laser granulometer gives similar particles distribution for the two agents. Using same glass frit and organic vehicle for comparative purposes, two conductive pastes were prepared with the synthesized silver powders for the front-side metalization of multi-crystalline cells. The pastes provided acceptable fill factor of 59.5 % and 60.8 % respectively.

Keywords: chemical reduction, conductive paste, silver nitrate, solar cell

Procedia PDF Downloads 295
1816 Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density

Authors: M. Mahdavi, M. Mohseni, R. Rafiei, H. Yari

Abstract:

Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance.

Keywords: refinish clear coat, pancreatin, Arabic gum, cross-linking, biological degradation

Procedia PDF Downloads 347
1815 Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides

Authors: Gheorghiţa Mitran, Adriana Urdă, Mihaela Florea, Octavian Dumitru Pavel, Florentina Neaţu

Abstract:

Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content.

Keywords: malic acid, oxidative dehydrogenation, hydrogenation, oxaloacetic acid

Procedia PDF Downloads 165
1814 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun

Abstract:

Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.

Keywords: hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), metal ratio

Procedia PDF Downloads 233
1813 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications

Authors: Mahmoud Elrouby

Abstract:

Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.

Keywords: electrodeposition, metal chacogenides, semiconductors, applications

Procedia PDF Downloads 281
1812 The Role of 'Tantric Bhakti Movement' in Conceptualization of the Manifestation of Hindu God Concept

Authors: Ahmed M. Alavi

Abstract:

India is the motherland of countless beliefs and religious traditions. Hinduism is one of the oldest traditions of India and owns the treasure of numerous organic and inorganic gods. Hinduism was unfamiliar of the manifestation of divine powers in its early accounts. The conceptualization of the divine powers is still debatable query among the experts of the area. This study examines the unseen memoirs of the Hindu god concept and answers the dubious question ‘how Hindu gods subjected to manifestation? Comparing the attitude of the Hindu and Asiatic tantric traditions; these study hypotheses the clear role of tantric Bhakti movements which originated in 3rd to 5th century BC in south India as the key of the conceptualization. The study concludes exploring the vital role of Bhakti movement in rifting the Indian Hindu community to three major fans of manifested gods; the Shaivism, Vishnavism and Saktism and spreading the new trend all over the sub-continent.

Keywords: Bhakti movement, concept of manifestation of divine object, Hindu god concept, Tantrism

Procedia PDF Downloads 211
1811 Characterization of Surface Suction Grippers for Continuous-Discontinuous Fiber Reinforced Semi-Finished Parts of an Automated Handling and Preforming Operation

Authors: Jürgen Fleischer, Woramon Pangboonyanon, Dominic Lesage

Abstract:

Non-metallic lightweight materials such as fiber reinforced plastics (FRP) become very significant at present. Prepregs e.g. SMC and unidirectional tape (UD-tape) are one of raw materials used to produce FRP. This study concerns with the manufacturing steps of handling and preforming of this UD-SMC and focuses on the investigation of gripper characteristics regarding gripping forces in normal and lateral direction, in order to identify suitable operating pressures for a secure gripping operation. A reliable handling and preforming operation results in a higher adding value of the overall process chain. As a result, the suitable operating pressures depending on travelling direction for each material type could be shown. Moreover, system boundary conditions regarding allowable pulling force in normal and lateral directions during preforming could be measured.

Keywords: continuous-discontinuous fiber reinforced plastics, UD-SMC-prepreg, handling, preforming, prepregs, sheet moulding compounds, surface suction gripper

Procedia PDF Downloads 209
1810 Quantitative Structure-Activity Relationship Modeling of Detoxication Properties of Some 1,2-Dithiole-3-Thione Derivatives

Authors: Nadjib Melkemi, Salah Belaidi

Abstract:

Quantitative Structure-Activity Relationship (QSAR) studies have been performed on nineteen molecules of 1,2-dithiole-3-thione analogues. The compounds used are the potent inducers of enzymes involved in the maintenance of reduced glutathione pools as well as phase-2 enzymes important to electrophile detoxication. A multiple linear regression (MLR) procedure was used to design the relationships between molecular descriptor and detoxication properties of the 1,2-dithiole-3-thione derivatives. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based of the following descriptors: qS2, qC3, qC5, qS6, DM, Pol, log P, MV, SAG, HE and EHOMO for the specific activity of quinone reductase; qS1, qS2, qC3, qC4, qC5, qS6, DM, Pol, logP, MV, SAG, HE and EHOMO for the production of growth hormone. To confirm the predictive power of the models, an external set of molecules was used. High correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR models.

Keywords: QSAR, quinone reductase activity, production of growth hormone, MLR

Procedia PDF Downloads 331
1809 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,

Procedia PDF Downloads 318
1808 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast

Procedia PDF Downloads 238
1807 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 379