Search results for: chemical oxygen demand (COD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8285

Search results for: chemical oxygen demand (COD)

5885 Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit

Authors: Zahia Dorbane, Si Ammar Kadi, Dalila Boudouma, Thierry Gidenne

Abstract:

In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit.

Keywords: digestibility, nutritive value, olive cake, rabbit

Procedia PDF Downloads 143
5884 Failure Analysis of a Hydrocarbon Carrying/Piping System

Authors: Esteban Morales Murillo, Ephraim Mokgothu

Abstract:

This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed.

Keywords: corrosion, Couper-Gorman, high-temperature corrosion, sulfidation, wall thinning, piping system

Procedia PDF Downloads 370
5883 Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice

Authors: Eun Gyeong Lee, Ji Young Park, Hyun Ae Woo

Abstract:

Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI.

Keywords: peroxiredoxin, ischemia/reperfusion, kidney, oxidative stress

Procedia PDF Downloads 369
5882 Effect of Brewing on the Bioactive Compounds of Coffee

Authors: Ceyda Dadali, Yeşim Elmaci

Abstract:

Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.

Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing

Procedia PDF Downloads 183
5881 Safety Considerations of Furanics for Sustainable Applications in Advanced Biorefineries

Authors: Anitha Muralidhara, Victor Engelen, Christophe Len, Pascal Pandard, Guy Marlair

Abstract:

Production of bio-based chemicals and materials from lignocellulosic biomass is gaining tremendous importance in advanced bio-refineries while aiming towards progressive replacement of petroleum based chemicals in transportation fuels and commodity polymers. One such attempt has resulted in the production of key furan derivatives (FD) such as furfural, HMF, MMF etc., via acid catalyzed dehydration (ACD) of C6 and C5 sugars, which are further converted into key chemicals or intermediates (such as Furandicarboxylic acid, Furfuryl alcohol etc.,). In subsequent processes, many high potential FD are produced, that can be converted into high added value polymers or high energy density biofuels. During ACD, an unavoidable polyfuranic byproduct is generated which is called humins. The family of FD is very large with varying chemical structures and diverse physicochemical properties. Accordingly, the associated risk profiles may largely vary. Hazardous Material (Haz-mat) classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging, safe storage, and transportation. Considering the growing application routes of FD, it becomes important to notice the limited access to safety related information (safety data sheets available only for famous compounds such as HMF, furfural etc.,) in these internationally recognized haz-mat classification systems. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. Factors such as thermal stability, speed of combustion, chemical incompatibilities, etc., can equally influence the safety profile of a compound, that are clearly out of the scope of any haz-mat classification system. Irrespective of the bio-based origin, FD has so far received inconsistent remarks concerning their toxicity profiles. With such inconsistencies, there is a fear that, a large family of FD may also follow extreme judgmental scenarios like ionic liquids, by ranking some compounds as extremely thermally stable, non-flammable, etc., Unless clarified, these messages could lead to misleading judgements while ranking the chemical based on its hazard rating. Safety is a key aspect in any sustainable biorefinery operation/facility, which is often underscored or neglected. To fill up these existing data gaps and to address ambiguities and discrepancies, the current study focuses on giving preliminary insights on safety assessment of FD and their potential targeted by-products. With the available information in the literature and obtained experimental results, physicochemical safety, environmental safety as well as (a scenario based) fire safety profiles of key FD, as well as side streams such as humins and levulinic acid, will be considered. With this, the study focuses on defining patterns and trends that gives coherent safety related information for existing and newly synthesized FD in the market for better functionality and sustainable applications.

Keywords: furanics, humins, safety, thermal and fire hazard, toxicity

Procedia PDF Downloads 154
5880 Application of Learning Media Based Augmented Reality on Molecular Geometry Concept

Authors: F. S. Irwansyah, I. Farida, Y. Maulana

Abstract:

Studying chemistry requires the ability to understand three levels of understanding in the form of macroscopic, submicroscopic and symbolic, but the lack of emphasis on the submicroscopic level leads to the understanding of chemical concepts becoming incomplete, due to the limitations of the tools capable of providing visualization of submicroscopic concepts. The purpose of this study describes the stages of making augmented reality learning media on the concept of molecular geometry and analyze the feasibility test result of augmented reality learning media on the concept of molecular geometry. This research uses Research and Development (R & D) method which produces a product of AR learning media on molecular geometry concept and test the effectiveness of the product. Research stages include concept analysis and learning indicators, design development, validation, feasibility, and limited testing. The stages of validation and limited trial are aimed to get feedback in the form of assessment, suggestion and improvement on learning aspect, material substance aspect, visual communication aspect and software engineering aspects and media feasibility in terms of media creation purpose to be used in learning. The results of the overall feasibility test obtained r-calculation 0,7-0,9 with the interpretation of high feasibility value, whereas the result of limited trial got the percentage of eligibility with the average value equal to 70,83-92,5%. This percentage indicates that AR's learning media product on the concept of molecular geometry, deserves to be used as a learning resource.

Keywords: android, augmented reality, chemical learning, geometry

Procedia PDF Downloads 197
5879 Environmental Performance of Olive Oil Production in Greece

Authors: P. Tsarouhas, Ch. Achillas, D. Aidonis, D. Folinas, V. Maslis, N. Moussiopoulos

Abstract:

Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed.

Keywords: LCA, olive oil production, environmental impact, case study, Greece

Procedia PDF Downloads 416
5878 Identification and Characterization of Heavy Metal Resistant Bacteria from the Klip River

Authors: P. Chihomvu, P. Stegmann, M. Pillay

Abstract:

Pollution of the Klip River has caused microorganisms inhabiting it to develop protective survival mechanisms. This study isolated and characterized the heavy metal resistant bacteria in the Klip River. Water and sediment samples were collected from six sites along the course of the river. The pH, turbidity, salinity, temperature and dissolved oxygen were measured in-situ. The concentrations of six heavy metals (Cd, Cu, Fe, Ni, Pb, and Zn) of the water samples were determined by atomic absorption spectroscopy. Biochemical and antibiotic profiles of the isolates were assessed using the API 20E® and Kirby Bauer Method. Growth studies were carried out using spectrophotometric methods. The isolates were identified using 16SrDNA sequencing. The uppermost part of the Klip River with the lowest pH had the highest levels of heavy metals. Turbidity, salinity and specific conductivity increased measurably at Site 4 (Henley on Klip Weir). MIC tests showed that 16 isolates exhibited high iron and lead resistance. Antibiotic susceptibility tests revealed that the isolates exhibited multi-tolerances to drugs such as tetracycline, ampicillin, and amoxicillin.

Keywords: Klip River, heavy metals, resistance, 16SrDNA

Procedia PDF Downloads 313
5877 Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash

Authors: Sirirat Jangkorn, Pornsawai Praipipat

Abstract:

Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water.

Keywords: sugarcane bagasse ash, solid wastes, zeolite, lead

Procedia PDF Downloads 131
5876 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine

Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker

Abstract:

Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.

Keywords: diesel engine, fuel pump, opposing pistons, two-stroke

Procedia PDF Downloads 127
5875 Modelling and Optimization of Laser Cutting Operations

Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail

Abstract:

Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.

Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE

Procedia PDF Downloads 603
5874 Environment Problems of Energy Exploitation and Utilization in Nigeria

Authors: Aliyu Mohammed Lawal

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: effluent gas, emissions, NOx, SOx

Procedia PDF Downloads 364
5873 Process of the Emergence and Evolution of Socio-Cultural Ideas about the "Asian States" In the Context of the Development of US Cinema in 1941-1945

Authors: Selifontova Darya Yurievna

Abstract:

The study of the process of the emergence and evolution of socio-cultural ideas about the "Asian states" in the context of the development of US cinema in 1941-1945 will contribute both to the approbation of a new approach to the classical subject and will allow using the methodological tools of history, political science, philology, sociology for understanding modern military-political, historical, ideological, socio-cultural processes on a concrete example. This is especially important for understanding the process of constructing the image of the Japanese Empire in the USA. Assessments and images of China and Japan in World War II, created in American cinema, had an immediate impact on the media, public sentiment, and opinions. During the war, the US cinema created new myths and actively exploited old ones, combining them with traditional Hollywood cliches - all this served as a basis for creating the image of China and the Japanese Empire on the screen, which were necessary to solve many foreign policy and domestic political tasks related to the construction of two completely different, but at the same time, similar images of Asia (China and the Japanese Empire). In modern studies devoted to the history of wars, the study of the specifics of the information confrontation of the parties is in demand. A special role in this confrontation is played by propaganda through cinema, which uses images, historical symbols, and stable metaphors, the appeal to which can form a certain public reaction. Soviet documentaries of the war years are proof of this. The relevance of the topic is due to the fact that cinema as a means of propaganda was very popular and in demand during the Second World War. This period was the time of creation of real masterpieces in the field of propaganda films, in the documentary space of the cinema of 1941 – 1945. The traditions of depicting the Second World War were laid down. The study of the peculiarities of visualization and mythologization of the Second World War in Soviet cinema is the most important stage for studying the development of the specifics of propaganda methods since the methods and techniques of depicting the war formed in 1941-1945 are also significant at the present stage of the study of society.

Keywords: asian countries, politics, sociology, domestic politics, USA, cinema

Procedia PDF Downloads 109
5872 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments

Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan

Abstract:

Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planning

Keywords: clean fuels, hydrodynamics, coastal engineering, impact assessments

Procedia PDF Downloads 52
5871 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori

Authors: Sunghee Nam

Abstract:

Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.

Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori

Procedia PDF Downloads 242
5870 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 119
5869 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles

Authors: Usman Asif, Klaus Schmidt

Abstract:

In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.

Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations

Procedia PDF Downloads 101
5868 Design of a New Vegetable Snack

Authors: Patricia Calvo, Francisco M. Sánchez, María J. Rodríguez

Abstract:

Nowadays, food intake is becoming more irregular due to changes in family organization and lifestyle. Snacking is part of the day-to-day lives of people, however, most of the snacks have a high saturated fat, salt and refined sugar content; these dietary factors are believed to have negative health consequences. For this reason, there has been an increase in consumer demand for healthy, natural and convenient foods, so the development of a significant portion of new products focuses on improving the nutritional value of food snacks through modification its nutritional composition. In this paper, a new product made from vegetables has been designed. This new product would be an ideal food format to include ingredients with positive health benefits.

Keywords: healthy, pepper, dried, carotenes, polyphenols

Procedia PDF Downloads 363
5867 Application of Biosensors in Forensic Analysis

Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.

Keywords: biosensors, forensic analysis, biological fluid, crime detection

Procedia PDF Downloads 1092
5866 A Project in the Framework “Nextgenerationeu”: Sustainable Photoelectrochemical Hydrogen Evolution - SERGIO

Authors: Patrizia Frontera, Anastasia Macario, Simona Crispi, Angela Malara, Pierantonio De Luca, Stefano Trocino

Abstract:

The exploration of solar energy for the photoelectrochemical splitting of water into hydrogen and oxygen has been extensively researched as a means of generating sustainable H₂ fuel. However, despite these efforts, commercialization of this technology has not yet materialized. Presently, the primary impediments to commercialization include low solar-to-hydrogen efficiency (2-3% in PEC with an active area of up to 10-15 cm²), the utilization of costly and critical raw materials (e.g., BiVO₄), and energy losses during the separation of H₂ from O₂ and H₂O vapours in the output stream. The SERGIO partners have identified an advanced approach to fabricate photoelectrode materials, coupled with an appropriate scientific direction to achieve cost-effective solar-driven H₂ production in a tandem photoelectrochemical cell. This project is designed to reach Technology Readiness Level (TRL) 4 by validating the technology in the laboratory using a cell with an active area of up to 10 cm², boasting a solar-to-hydrogen efficiency of 5%, and ensuring acceptable hydrogen purity (99.99%). Our objectives include breakthroughs in cost efficiency, conversion efficiency, and H₂ purity.

Keywords: photoelectrolysis, green hydrogen, photoelectrochemical cell, semiconductors

Procedia PDF Downloads 49
5865 Chemical and Biological Studies of Kielmeyera coriacea Mart. (Calophyllaceae) Based on Ethnobotanical Survey of Rural Community from Brazil

Authors: Vanessa G. P. Severino, Eliangela Cristina Candida Costa, Nubia Alves Mariano Teixeira Pires Gomides, Lucilia Kato, Afif Felix Monteiro, Maria Anita Lemos Vasconcelos Ambrosio, Carlos Henrique Gomes Martins

Abstract:

One of the biomes present in Brazil is known as Cerrado, which is a vast tropical savanna ecoregion, particularly in the states of Goiás, Mato Grosso do Sul, Mato Grosso, Tocantins and Minas Gerais. Many species of plants are characterized as endemic and they have therapeutic value for a large part of the population, especially to the rural communities. Given that, the southeastern region of the state of Goiás contains about 21 rural communities, which present a form of organization based on the use of natural resources available. One of these rural communities is named of Coqueiros, where the knowledge about the medicinal plants was very important to this research. Thus, this study focuses on the ethnobotanical survey of this community on the use of Kielmeyera coriacea to treat diseases. From the 37 members interviewed, 76% indicated this species for the treatment of intestinal infection, leukemia, anemia, gastritis, gum pain, toothache, cavity, arthritis, arthrosis, healing, vermifuge, rheumatism, antibiotic, skin problems, mycoses and all kinds of infections. The medicinal properties attributed during the interviews were framed in the body system (disease categories), adapted from ICD 10; thus, 20 indications of use were obtained, among five body systems. Therefore, the root of this species was select to chemical and biological (antioxidant and antimicrobial) studies. From the liquid-liquid extraction of ethanolic extract of root (EER), the hexane (FH), ethyl acetate (FAE), and hydro alcoholic (FHA) fractions were obtained. The chemical profile study of these fractions was performed by LC-MS, identifying major compounds such as δ-tocotrienol, prenylated acylphoroglucinol, 2-hydroxy-1-methoxyxanthone and quercitrin. EER, FH, FAE and FHA were submitted to biological tests. FHA presented the best antioxidant action (EC50 201.53 μg mL-1). EER inhibited the bacterial growth of Streptococcus pyogenes and Pseudomonas aeruginosa, microorganisms associated with rheumatism, at Minimum Inhibitory Concentration (MIC) of 6.25 μg mL-1. In addition, the FH-10 subfraction, obtained from FH fractionation, presented MIC of 1.56 μg mL-1 against S. pneumoniae; EER also inhibited the fungus Candida glabrata (MIC 7.81 μg mL- 1). The FAE-4.7.3 fraction, from the fractionation of FAE, presented MIC of 200 μg mL-1 against Lactobacillus casei, which is one of the causes of caries and oral infections. By the correlation of the chemical and biological data, it is possible to note that the FAE-4.7.3 and FH-10 are constituted 4-hydroxy-2,3-methylenedioxy xanthone, 3-hydroxy-1,2-dimethoxy xanthone, lupeol, prenylated acylphoroglucinol and quercitrin, which could be associated with the biological potential found. Therefore, this study provides an important basis for further investigations regarding the compounds present in the active fractions of K. coriacea, which will permit the establishment of a correlation between ethnobotanical survey and bioactivity.

Keywords: biological activity, ethnobotanical survey, Kielmeyera coriacea Mart., LC-MS profile

Procedia PDF Downloads 122
5864 Setting the Baseline for a Sentinel System for the Identification of Occupational Risk Factors in Africa

Authors: Menouni Aziza, Chbihi Kaoutar, Duca Radu Corneliu, Gilissen Liesbeth, Bounou Salim, Godderis Lode, El Jaafari Samir

Abstract:

In Africa, environmental and occupational health risks are mostly underreported. The aim of this research is to develop and implement a sentinel surveillance system comprising training and guidance of occupational physicians (OC) who will report new work-related diseases in African countries. A group of 30 OC are recruited and trained in each of the partner countries (Morocco, Benin and Ethiopia). Each committed OC is asked to recruit 50 workers during a consultation in a time-frame of 6 months (1500 workers per country). Workers are asked to fill out an online questionnaire about their health status and work conditions, including exposure to 20 chemicals. Urine and blood samples are then collected for human biomonitoring of common exposures. Some preliminary results showed that 92% of the employees surveyed are exposed to physical constraints, 44% to chemical agents, and 24% to biological agents. The most common physical constraints are manual handling of loads, noise pollution and thermal pollution. The most frequent chemical risks are exposure to pesticides and fuels. This project will allow a better understanding of effective sentinel systems as a promising method to gather high quality data, which can support policy-making in terms of preventing emerging work-related diseases.

Keywords: sentinel system, occupational diseases, human biomonitoring, Africa

Procedia PDF Downloads 69
5863 Development and Characterisation of a Microbioreactor 'Cassette' for Cell Culture Applications

Authors: Nelson Barrientos, Matthew J. Davies, Marco C. Marques, Darren N. Nesbeth, Gary J. Lye, Nicolas Szita

Abstract:

Microbioreactor technology is making important advances towards its application in cell culture and bioprocess development. In particular, the technology promises flexible and controllable devices capable to perform parallelised experimentation at low cost. Currently, state of the art methods (e.g. optical sensors) allow the accurate monitoring of the microbioreactor operation. In addition, the laminar flow regime encountered in these devices allows more predictive fluid dynamics modelling, improving the control over the soluble, physical and mechanical environment of the cells. This work describes the development and characterisation of a novel microbioreactor cassette system (microbioreactor volume is 150 μL. The volumetric oxygen transfer coefficient (KLa) and mixing time have been characterised to be between 25 to 113 h-1 and 0.5 and 0.1 s, respectively. In addition, the Residence time distribution (RTD) analysis confirms that the reactor operates at well mixed conditions. Finally, Staphylococcus carnosus TM300 growth is demonstrated via batch culture experiments. Future work consists in expanding the optics of the microbioreactor design to include the monitoring of variables such as fluorescent protein expression, among others.

Keywords: microbioreactor, cell-culture, fermentation, microfluidics

Procedia PDF Downloads 394
5862 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications

Authors: K. Uyanga, W. Daoud

Abstract:

Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.

Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate

Procedia PDF Downloads 127
5861 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion

Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy

Abstract:

The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.

Keywords: chemical composition, dual-energy computed tomography, inversion algorithm

Procedia PDF Downloads 420
5860 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves

Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela

Abstract:

In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.

Keywords: browse plants, chemical composition, harvesting heights, phenolics

Procedia PDF Downloads 127
5859 Characterization of Gamma Irradiated PVDF and PVDF/Graphene Oxide Composites by Spectroscopic Techniques

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

The combination of the properties of graphene oxide (OG) and PVDF homopolymer makes their combined composite materials as multifunctional systems with great potential. Knowledge of the molecular structure is essential for better use. In this work, the degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to degradation of PVDF/OG composites. The samples were irradiated with a Co-60 source at constant dose rate, with doses ranging from 100 kGy to 1,000 kGy. In FTIR data shown that the formation of oxidation products was at the both samples with formation of carbonyl and hydroxyl groups amongst the most prevalent products in the pure PVDF samples. In the other hand, the composites samples exhibit less presence of degradation products with predominant formation of carbonyl groups, these results also seen in the UV-Vis analysis. The results show that the samples of composites may have greater resistance to the irradiation process, since they have less degradation products than pure PVDF samples seen by spectroscopic techniques.

Keywords: gamma irradiation, PVDF, PVDF/OG composites, spectroscopic techniques

Procedia PDF Downloads 558
5858 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications

Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin

Abstract:

This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.

Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack

Procedia PDF Downloads 66
5857 Effects of Starvation Stress on Antioxidant Defense System in Rainbow Trout (Oncorhynchus mykiss)

Authors: Metin Çenesi̇z, Büşra Şahi̇n

Abstract:

The sustainability of aquaculture is possible through the conscious use of resources and minimization of environmental impacts. These can be achieved through science-based planning, ecosystem-based management, strict observations and controls. The ideal water temperature for rainbow trout, which are intensively farmed in the Black Sea Region of Turkey, should be below 20 oC. In summer, the water temperature exceeds this value in some dams where production is carried out. For this reason, it has become obligatory to transfer to dams where the water temperature is low in order to provide suitable temperature conditions. There are many factors that may cause stress to trout during transportation. Some of these stress factors are starvation of the fish for a while to avoid contamination of the water, mobility and noise during transportation and loading, dissolved oxygen content and composition of the water in the transportation tanks, etc. The starvation stress caused by starvation/lack of food during transportation causes a certain amount of loss of macronutrients such as carbohydrates, proteins and fats in the tissues. This situation causes changes in metabolic activities and the energy balance of fish species. In this study, oxidant-antioxidant values and stress markers of rainbow trout starved before transplantation will be evaluated.

Keywords: oncorhynchus mykiss, starvation stress, TAS, TOS

Procedia PDF Downloads 63
5856 Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene

Authors: Kostandinos Katsamangas, Fawad Inam

Abstract:

Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on de-wrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has a significant effect on de-wrinkling whereas SDS had minimal effect on the de-wrinkling of graphene.

Keywords: Graphene, de-wrinkling, dispersion, surfactants, scanning electronic microscopy

Procedia PDF Downloads 447