Search results for: Numerical simulations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4813

Search results for: Numerical simulations

2413 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty

Abstract:

In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 396
2412 Combustion Analysis of Suspended Sodium Droplet

Authors: T. Watanabe

Abstract:

Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.

Keywords: analysis, combustion, droplet, sodium

Procedia PDF Downloads 207
2411 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 319
2410 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar

Abstract:

The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 297
2409 Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)

Authors: F. Bendahma, S. Bentata, S. Cherid, A. Zitouni, S. Terkhi, T. Lantri, Y. Sefir, Z. F. Meghoufel

Abstract:

We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.

Keywords: electronic transport properties, structural parameters, superlattices, transfer-matrix technique

Procedia PDF Downloads 283
2408 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine

Procedia PDF Downloads 258
2407 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 373
2406 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 355
2405 Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures

Authors: Brandon To, Yong S. Park

Abstract:

As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures.

Keywords: battery pack, electric vehicle, honeycomb, side impact

Procedia PDF Downloads 120
2404 Investigation of Neutral Axis Shifting and Wall Thickness Distribution of Bent Tubes Produced by Rotary Draw Bending

Authors: Bernd Engel, Hassan Raheem Hassan

Abstract:

Rotary draw bending is a method used for tube forming. During the tube bending process, the neutral axis moves towards the inner arc and the wall thickness changes in the cross section of the tube. Wall thinning of the tube takes place at the extrados, whereas wall thickening of the tube occurs at the intrados. This paper investigates the tube bending with rotary draw bending process using thick-walled tubes and different material properties (16Mo3 and 10CrMo9-10). The experimental tests and finite element simulations are used to calculate the variable characteristics (wall thickness distribution, neutral axis shifting and longitudinal strain distribution). These results are compared with results of a plasto-mechanical model. Moreover, the cross section distortion is investigated in this study. This study helped to get bends with smaller wall factor for different material properties.

Keywords: rotary draw bending, thick wall tube, material properties, material influence

Procedia PDF Downloads 612
2403 The Optical OFDM Equalization Based on the Fractional Fourier Transform

Authors: A. Cherifi, B. S. Bouazza, A. O. Dahman, B. Yagoubi

Abstract:

Transmission over Optical channels will introduce inter-symbol interference (ISI) as well as inter-channel (or inter-carrier) interference (ICI). To decrease the effects of ICI, this paper proposes equalizer for the Optical OFDM system based on the fractional Fourier transform (FrFFT). In this FrFT-OFDM system, traditional Fourier transform is replaced by fractional Fourier transform to modulate and demodulate the data symbols. The equalizer proposed consists of sampling the received signal in the different time per time symbol. Theoretical analysis and numerical simulation are discussed.

Keywords: OFDM, fractional fourier transform, internet and information technology

Procedia PDF Downloads 405
2402 Analyzing a Tourism System by Bifurcation Theory

Authors: Amin Behradfar

Abstract:

‎Tourism has a direct impact on the national revenue for all touristic countries. It creates work opportunities‎, ‎industries‎, ‎and several investments to serve and raise nations performance and cultures. ‎This paper is devoted to analyze dynamical behaviour of a four-dimensional non-linear tourism-based social-ecological system by using the codimension two bifurcation theory‎. ‎In fact we investigate the cusp bifurcation of that‎. ‎Implications of our mathematical results to the tourism‎ ‎industry are discussed‎. Moreover, profitability‎, ‎compatibility and sustainability of the tourism system are shown by the aid of cusp bifurcation and numerical techniques‎.

Keywords: tourism-based social-ecological dynamical systems, cusp bifurcation, center manifold theory, profitability, ‎compatibility, sustainability

Procedia PDF Downloads 500
2401 Three Dimensional Simulation of the Transient Modeling and Simulation of Different Gas Flows Velocity and Flow Distribution in Catalytic Converter with Porous Media

Authors: Amir Reza Radmanesh, Sina Farajzadeh Khosroshahi, Hani Sadr

Abstract:

The transient catalytic converter performance is governed by complex interactions between exhaust gas flow and the monolithic structure of the catalytic converter. Stringent emission regulations around the world necessitate the use of highly-efficient catalytic converters in vehicle exhaust systems. Computational fluid dynamics (CFD) is a powerful tool for calculating the flow field inside the catalytic converter. Radial velocity profiles, obtained by a commercial CFD code, present very good agreement with respective experimental results published in the literature. However the applicability of CFD for transient simulations is limited by the high CPU demands. In the present work, Geometric modeling ceramic monolith substrate is done with square shaped channel type of Catalytic converter and it is coated platinum and palladium. This example illustrates the effect of flow distribution on thermal response of a catalytic converter and different gas flow velocities, during the critical phase of catalytic converter warm up.

Keywords: catalytic converter, computational fluid dynamic, porous media, velocity distribution

Procedia PDF Downloads 856
2400 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 509
2399 Digital Signal Processor Implementation of a Novel Sinusoidal Pulse Width Modulation Algorithm Algorithm for a Reduced Delta Inverter

Authors: Asma Ben Rhouma, Mahmoud Hamouda

Abstract:

The delta inverter is considered as the reduced three-phase dc/ac converter topology. It contains only three two-quadrant power switches compared to six in the conventional one. This reduced power conversion topology is widely considered in many industrial applications, such as electric traction and large photovoltaic systems. This paper is focused on a new sinusoidal pulse width modulation algorithm (SPWM) developed for the delta inverter. As an unconventional inverter’s structure, irregular modulating functions waveforms of the SPWM switching technique are generated. The performances of the proposed SPWM technique was proven through computer simulations carried out on a delta inverter feeding a three-phase RL load. Digital Signal Processor (DSP) implementation of the novel SPWM algorithm have been realized on a laboratory prototype of the delta inverter feeding an RL load and a squirrel cage induction motor. Experimental results have highlighted its high performances under the proposed SPWM method.

Keywords: delta inverter, SPWM, simulation, DSP implementation

Procedia PDF Downloads 162
2398 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 130
2397 Effect of Functional Group Position in Co-Formers and Solvent on Cocrystal Polymorphism/Stoichiomorphism: A Case Study

Authors: Luguang Qi, Chuang Xie

Abstract:

In recent years, there has been an increase in the number of reports on cocrystal polymorphism and stoichiomorphism. However, the research on the factors that influence these phenomena is limited. Herein, picolinamide (PAM), nicotinamide (NAM), and isonicotinamide (INA) were selected as co-formers to form multicomponent solids with 4-chloro-3-sulfamoylbenzoic acid (CSBA). Six new cocrystal forms of CSBA were discovered, and their crystal structures were determined. It was found that PAM and NAM can only form one cocrystal with CSBA, while INA can form up to four cocrystals, including both cocrystal polymorphism and stoichiomorphism. Molecular electrostatic potential analysis and crystal structure analysis showed that the functional group position of PAM limited the diversity of cocrystal synthons, while the lattice energy limited the diversity of cocrystal synthons when NAM acted as a co-former. Only INA was not subject to these restrictions when forming cocrystals. Finally, the influence of solvents on cocrystals was illustrated by determining the ternary phase diagrams. The mechanism of two similar solvents, ethyl acetate, and acetone, controlling the crystallization of cocrystal polymorphism was analyzed by molecular simulations.

Keywords: cocrystal polymorphism, cocrystal stoichiomorphism, phase diagram, molecular simulation

Procedia PDF Downloads 71
2396 A New Family of Globally Convergent Conjugate Gradient Methods

Authors: B. Sellami, Y. Laskri, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.

Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization

Procedia PDF Downloads 409
2395 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe

Authors: E. Marušić-Paloka, I. Pažanin, M. Prša

Abstract:

Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.

Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction

Procedia PDF Downloads 234
2394 A First Step towards Automatic Evolutionary for Gas Lifts Allocation Optimization

Authors: Younis Elhaddad, Alfonso Ortega

Abstract:

Oil production by means of gas lift is a standard technique in oil production industry. To optimize the total amount of oil production in terms of the amount of gas injected is a key question in this domain. Different methods have been tested to propose a general methodology. Many of them apply well-known numerical methods. Some of them have taken into account the power of evolutionary approaches. Our goal is to provide the experts of the domain with a powerful automatic searching engine into which they can introduce their knowledge in a format close to the one used in their domain, and get solutions comprehensible in the same terms, as well. These proposals introduced in the genetic engine the most expressive formal models to represent the solutions to the problem. These algorithms have proven to be as effective as other genetic systems but more flexible and comfortable for the researcher although they usually require huge search spaces to justify their use due to the computational resources involved in the formal models. The first step to evaluate the viability of applying our approaches to this realm is to fully understand the domain and to select an instance of the problem (gas lift optimization) in which applying genetic approaches could seem promising. After analyzing the state of the art of this topic, we have decided to choose a previous work from the literature that faces the problem by means of numerical methods. This contribution includes details enough to be reproduced and complete data to be carefully analyzed. We have designed a classical, simple genetic algorithm just to try to get the same results and to understand the problem in depth. We could easily incorporate the well mathematical model, and the well data used by the authors and easily translate their mathematical model, to be numerically optimized, into a proper fitness function. We have analyzed the 100 curves they use in their experiment, similar results were observed, in addition, our system has automatically inferred an optimum total amount of injected gas for the field compatible with the addition of the optimum gas injected in each well by them. We have identified several constraints that could be interesting to incorporate to the optimization process but that could be difficult to numerically express. It could be interesting to automatically propose other mathematical models to fit both, individual well curves and also the behaviour of the complete field. All these facts and conclusions justify continuing exploring the viability of applying the approaches more sophisticated previously proposed by our research group.

Keywords: evolutionary automatic programming, gas lift, genetic algorithms, oil production

Procedia PDF Downloads 160
2393 Co-Evolutionary Fruit Fly Optimization Algorithm and Firefly Algorithm for Solving Unconstrained Optimization Problems

Authors: R. M. Rizk-Allah

Abstract:

This paper presents co-evolutionary fruit fly optimization algorithm based on firefly algorithm (CFOA-FA) for solving unconstrained optimization problems. The proposed algorithm integrates the merits of fruit fly optimization algorithm (FOA), firefly algorithm (FA) and elite strategy to refine the performance of classical FOA. Moreover, co-evolutionary mechanism is performed by applying FA procedures to ensure the diversity of the swarm. Finally, the proposed algorithm CFOA- FA is tested on several benchmark problems from the usual literature and the numerical results have demonstrated the superiority of the proposed algorithm for finding the global optimal solution.

Keywords: firefly algorithm, fruit fly optimization algorithm, unconstrained optimization problems

Procedia PDF Downloads 534
2392 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method

Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria

Abstract:

This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.

Keywords: rocker, suspension, the finite element method, mechatronics engineering

Procedia PDF Downloads 540
2391 Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform

Authors: Sana Almi, Djamel Barkat

Abstract:

The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+.

Keywords: solvent extraction, nickel(II), cobalt(II), salicylidene aniline, o-, m-, and p-salicylidene toluidine

Procedia PDF Downloads 483
2390 Piezoelectric Actuator for Controlling Robotics Organs

Authors: Lemoussi Somia, Ouali Mohammed, Zemirline Adel

Abstract:

In precision engineering, including precision positioning, micro-manipulation, robotic systems... a majority of these applications actuated by piezo stack used the compliant amplifier mechanism to amplifying motion and guiding it as needed utilize the flexibility of their components, in this paper, we present a novel approach introducing a symmetric structure comprising three stages, featuring rectangular flexure hinges with a compact size of 77mm×42mm×10mm. This design provides the capability for rotation, translation or a combination of both movements in both directions. The system allows for a displacement of 2107.5 μm when the input displacement of PZT is 50 μm while considering the material constraints of the aluminum alloy (7075 T6) which has a maximum admissible stress of 500 MPa However, our proposed design imposes additional constraints to ensure the stress remains below 361 MPa for optimal performance. These findings were obtained through finite element simulations conducted using ANSYS Workbench. Furthermore, our module facilitates precise control of various components within robotic systems, allowing for adjustable speeds based on specific requirements or desired outcomes.

Keywords: robotic, piezoelectric, compliant mechanism, flexure hinge

Procedia PDF Downloads 77
2389 Using Reservoir Models for Monitoring Geothermal Surface Features

Authors: John P. O’Sullivan, Thomas M. P. Ratouis, Michael J. O’Sullivan

Abstract:

As the use of geothermal energy grows internationally more effort is required to monitor and protect areas with rare and important geothermal surface features. A number of approaches are presented for developing and calibrating numerical geothermal reservoir models that are capable of accurately representing geothermal surface features. The approaches are discussed in the context of cases studies of the Rotorua geothermal system and the Orakei-korako geothermal system, both of which contain important surface features. The results show that models are able to match the available field data accurately and hence can be used as valuable tools for predicting the future response of the systems to changes in use.

Keywords: geothermal reservoir models, surface features, monitoring, TOUGH2

Procedia PDF Downloads 411
2388 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 335
2387 Credit Risk and Financial Stability

Authors: Zidane Abderrezzaq

Abstract:

In contrast to recent successful developments in macro monetary policies, the modelling, measurement and management of systemic financial stability has remained problematical. Indeed, the focus of most effort has been on improving individual, rather than systemic, bank risk management; the Basel II objective has been to bring regulatory bank capital into line with the (sophisticated) banks’ assessment of their own economic capital. Even at the individual bank level there are concerns over appropriate diversification allowances, differing objectives of banks and regulators, the need for a buffer over regulatory minima, and the distinction between expected and unexpected losses (EL and UL). At the systemic level the quite complex and prescriptive content of Basel II raises dangers of ‘endogenous risk’ and procyclicality. Simulations suggest that this latter could be a serious problem. In an extension to the main analysis we study how liquidity effects interact with banking structure to produce a greater chance of systemic breakdown. We finally consider how the risk of contagion might depend on the degree of asymmetry (tiering) inherent in the structure of the banking system. A number of our results have important implications for public policy, which this paper also draws out.

Keywords: systemic stability, financial regulation, credit risk, systemic risk

Procedia PDF Downloads 379
2386 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 291
2385 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting

Procedia PDF Downloads 284
2384 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems

Authors: L. Wilkening, G. Ackermann, T. T. Do

Abstract:

This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.

Keywords: battery, e-mobility, photovoltaic, smart grid

Procedia PDF Downloads 142