Search results for: combined cycle power plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12740

Search results for: combined cycle power plant

12530 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 51
12529 The Potential and Economic Viability Analysis of Grid-Connected Solar PV Power in Kenya

Authors: Remember Samu, Kathy Kiema, Murat Fahrioglu

Abstract:

This present study is aimed at minimizing the dependence on fossil fuels thus reducing greenhouse gas (GHG) emissions and also to curb for the rising energy demands in Kenya. In this analysis, 35 locations were each considered for their techno-economic potential of installation of a 10MW grid-connected PV plant. The sites are scattered across the country but are mostly concentrated in the eastern region and were selected based on their accessibility to the national grid and availability of their meteorological parameters from NASA Solar Energy Dataset. RETScreen software 4.0 version will be employed for the analysis in this present paper. The capacity factor, simple payback, equity payback, the net present value (NPV), annual life cycle savings, energy production cost, net annual greenhouse gas emission reduction and the equivalent barrels of crude oil not consumed are outlined. Energy accounting is performed and compared to the existing grid tariff for an effective feasibility argument of this 10MW grid-connected PV power system.

Keywords: photovoltaics, project viability analysis, PV module, renewable energy

Procedia PDF Downloads 282
12528 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer

Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah

Abstract:

In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.

Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control

Procedia PDF Downloads 334
12527 Iterative Design Process for Development and Virtual Commissioning of Plant Control Software

Authors: Thorsten Prante, Robert Schöch, Ruth Fleisch, Vaheh Khachatouri, Alexander Walch

Abstract:

The development of industrial plant control software is a complex and often very expensive task. One of the core problems is that a lot of the implementation and adaptation work can only be done after the plant hardware has been installed. In this paper, we present our approach to virtually developing and validating plant-level control software of production plants. This way, plant control software can be virtually commissioned before actual ramp-up of a plant, reducing actual commissioning costs and time. Technically, this is achieved by linking the actual plant-wide process control software (often called plant server) and an elaborate virtual plant model together to form an emulation system. Method-wise, we are suggesting a four-step iterative process with well-defined increments and time frame. Our work is based on practical experiences from planning to commissioning and start-up of several cut-to-size plants.

Keywords: iterative system design, virtual plant engineering, plant control software, simulation and emulation, virtual commissioning

Procedia PDF Downloads 460
12526 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization

Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade

Abstract:

The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.

Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy

Procedia PDF Downloads 92
12525 Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

Authors: Mir Shahnawaz Jagirani, Aziza Aftab, Noorullah Soomro, Syed Farman Ali Shah, Kambiz Vafai

Abstract:

Utilization of indigenous adsorbent bed of power plant waste ash briquettes, a porous medium was used first time in Pakistan for low cost treatment facility for the toxic effluent of a dyes manufacturing plant effectively and economically. This could replace costly treatment facilities, such as reverse osmosis (RO) and the beds, containing imported and commercial grade expensive Granulated Activated Carbon (GAC).This bed was coupled with coagulants (Ferrous Sulphate and Lime) and found more effective. The coal fired ash (CFA) was collected from coal fired boilers of Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this bed resolved the disposal and environmental issues and treated waste water of chemicals, dyes and pigment manufacturing plant. The bed reduced COD, color, turbidity and TSS remarkably. An adsorptive capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment alone, elimination of COD by 32%, color by 48%, and turbidity by 50% and TSS by 51% respectively. When the bed was coupled with coagulants, it resulted an excessive removal of Color 88%, TSS 92%, COD 67% and Turbidity 89%. Its regeneration was also inexpensive and simple.

Keywords: coal fly ash, spheres, dyes, wastewater

Procedia PDF Downloads 325
12524 Chemical Analyses of Aspillia kotschyi (Sch. bipex, hochst) Oliv Plant

Authors: Abdu Umar Adamu, Maimuna Ibrahim

Abstract:

In this present work, a locally used medicinal plant, namely: Aspillia kotschyi belonging to the Compositae family, was extracted using methanolic and petroleum ether 60-80OC. The extracts were subjected to microwave plasma Atomic Emission Spectroscopy (MPES) to determine the following metals Se, Ag, Fe, Cu, Ni, As, Co, Mn, and Al. From the result, Ag, Cu, Ni, and Co are of very negligible concentrations in the plant extract. However, Seleniun is found to be 0.530 (mg/kg) in the plant methanolic extract. Iron, on the other hand, was found to be 3.712 (mg/kg) in the plant extract. Arsenic was found to be 0.506 and 1.301 (mg/kg) in both methanolic and petroleum spirit extracts of the plant material. The concentration of aluminium was found to be of the range of 3.050mg/kg in the plant. Functional group analysis of the plant extracts was also carried out using Fourier transform infrared (FTIR) spectroscopy which showed the presence of some functional groups. The results of this study suggest some merit in the popular use of the plant in herbal medicine.

Keywords: Aspillia kotschyi, functional group, FTIR, MPES

Procedia PDF Downloads 90
12523 Simultaneous Adsorption and Characterization of NOx and SOx Emissions from Power Generation Plant on Sliced Porous Activated Carbon Prepared by Physical Activation

Authors: Muhammad Shoaib, Hassan M. Al-Swaidan

Abstract:

Air pollution has been a major challenge for the scientists today, due to the release of toxic emissions from various industries like power plants, desalination plants, industrial processes and transportation vehicles. Harmful emissions into the air represent an environmental pressure that reflects negatively on human health and productivity, thus leading to a real loss in the national economy. Variety of air pollutants in the form of carbon oxides, hydrocarbons, nitrogen oxides, sulfur oxides, suspended particulate material etc. are present in air due to the combustion of different types of fuels like crude oil, diesel oil and natural gas. Among various pollutants, NOx and SOx emissions are considered as highly toxic due to its carcinogenicity and its relation with various health disorders. In Kingdom of Saudi Arabia electricity is generated by burning of crude, diesel or natural gas in the turbines of electricity stations. Out of these three, crude oil is used extensively for electricity generation. Due to the burning of the crude oil there are heavy contents of gaseous pollutants like sulfur dioxides (SOx) and nitrogen oxides (NOx), gases which are ultimately discharged in to the environment and is a serious environmental threat. The breakthrough point in case of lab studies using 1 gm of sliced activated carbon adsorbant comes after 20 and 30 minutes for NOx and SOx, respectively, whereas in case of PP8 plant breakthrough point comes in seconds. The saturation point in case of lab studies comes after 100 and 120 minutes and for actual PP8 plant it comes after 60 and 90 minutes for NOx and SOx adsorption, respectively. Surface characterization of NOx and SOx adsorption on SAC confirms the presence of peaks in the FT-IR spectrum. CHNS study verifies that the SAC is suitable for NOx and SOx along with some other C and H containing compounds coming out from stack emission stream from the turbines of a power plant.

Keywords: activated carbon, flue gases, NOx and SOx adsorption, physical activation, power plants

Procedia PDF Downloads 327
12522 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli

Abstract:

Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller

Procedia PDF Downloads 515
12521 Impact of Design Choices on the Life Cycle Energy of Modern Buildings

Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno

Abstract:

Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.

Keywords: building life cycle energy, embodied energy, energy design measures, low energy buildings

Procedia PDF Downloads 742
12520 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 147
12519 Effect of Rhythmic Auditory Stimulation on Gait in Patients with Stroke

Authors: Mohamed Ahmed Fouad

Abstract:

Background: Stroke is the most leading cause to functional disability and gait problems. Objectives: The purpose of this study was to determine the effect of rhythmic auditory stimulation combined with treadmill training on selected gait kinematics in stroke patients. Methods: Thirty male stroke patients participated in this study. The patients were assigned randomly into two equal groups, (study and control). Patients in the study group received treadmill training combined with rhythmic auditory stimulation in addition to selected physical therapy program for hemiparetic patients. Patients in the control group received treadmill training in addition to the same selected physical therapy program including strengthening, stretching, weight bearing, balance exercises and gait training. Biodex gait trainer 2 TM was used to assess selected gait kinematics (step length, step cycle, walking speed, time on each foot and ambulation index) before and after six weeks training period (end of treatment) for both groups. Results: There was a statistically significant increase in walking speed, step cycle, step length, percent of the time on each foot and ambulation index in both groups post-treatment. The improvement in gait parameters post-treatment was significantly higher in the study group compared to the control. Conclusion: Rhythmic auditory stimulation combined with treadmill training is effective in improving selected gait kinematics in stroke patients when added to the selected physical therapy program.

Keywords: stroke, rhythmic auditory stimulation, treadmill training, gait kinematics

Procedia PDF Downloads 216
12518 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle

Procedia PDF Downloads 207
12517 Comparative Life Cycle Assessment of Roofing System for Abu Dhabi

Authors: Iyasu Eibedingil

Abstract:

The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators.

Keywords: clay roof tile, concrete roof tile, life cycle assessment, sensitivity analysis

Procedia PDF Downloads 355
12516 Optimizing Coal Yard Management Using Discrete Event Simulation

Authors: Iqbal Felani

Abstract:

A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days.

Keywords: Coal Yard Management, Discrete event simulation First In First Out, Last In First Out.

Procedia PDF Downloads 642
12515 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures

Authors: Dong Wook Lee, Adrian Mistreanu

Abstract:

The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.

Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis

Procedia PDF Downloads 114
12514 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique

Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said

Abstract:

With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.

Keywords: genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation

Procedia PDF Downloads 503
12513 Phytomining for Rare Earth Elements: A Comparative Life Cycle Assessment

Authors: Mohsen Rabbani, Trista McLaughlin, Ehsan Vahidi

Abstract:

the remediation of polluted sites with heavy metals, such as rare earth elements (REEs), has been a primary concern of researchers to decontaminate the soil. Among all developed methods to address this concern, phytoremediation has been established as efficient, cost-effective, easy-to-use, and environmentally friendly way, providing a long-term solution for addressing this global concern. Furthermore, this technology has another great potential application in the metals production sector through returning metals buried in soil via metals cropping. Considering the significant metal concentration in hyper-accumulators, the utilization of bioaccumulated metals to extract metals from plant matter has been proposed as a sub-economic area called phytomining. As a recent, more advanced technology to eliminate such pollutants from the soil and produce critical metals, bioharvesting (phytomining/agromining) has been considered another compromising way to produce metals and meet the global demand for critical/target metals. The bio-ore obtained from phytomining can be safely disposed of or introduced to metal production pathways to obtain the most demanded metals, such as REEs. It is well-known that some hyperaccumulators, e.g., fern Dicranopteris linearis, can be used to absorb REE metals from the polluted soils and accumulate them in plant organs, such as leaves and stems. After soil remediation, the plant species can be harvested and introduced to the downstream steps, namely crushing/grinding, leaching, and purification processes, to extract REEs from plant matter. This novel interdisciplinary field can fill the gap between agriculture, mining, metallurgy, and the environment. Despite the advantages of agromining for the REEs production industry, key issues related to the environmental sustainability of the entire life cycle of this new concept have not been assessed yet. Hence, a comparative life cycle assessment (LCA) study was conducted to quantify the environmental footprints of REEs phytomining. The current LCA study aims to estimate and calculate environmental effects associated with phytomining by considering critical factors, such as climate change, land use, and ozone depletion. The results revealed that phytomining is an easy-to-use and environmentally sustainable approach to either eliminate REEs from polluted sites or produce REEs, offering a new source of such metals production. This LCA research provides guidelines for researchers active in developing a reliable relationship between agriculture, mining, metallurgy, and the environment to encounter soil pollution and keep the earth green and clean.

Keywords: phytoremediation, phytomining, life cycle assessment, environmental impacts, rare earth elements, hyperaccumulator

Procedia PDF Downloads 42
12512 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection

Authors: Jayakrishnan U.

Abstract:

A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.

Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption

Procedia PDF Downloads 277
12511 Study of the Effect of Extraction Solvent on the Content of Total Phenolic, Total Flavonoids and the Antioxidant Activity of an Endemic Medicinal Plant Growing in Morocco

Authors: Aghoutane Basma, Naama Amal, Talbi Hayat, El Manfalouti Hanae, Kartah Badreddine

Abstract:

Aromatic and medicinal plants are used by man for different needs, including food and medicinal needs for their biological properties attributed mainly to phenolic compounds and for their antioxidant capacity. In our study, the aim is to compare three extraction solvents by evaluating the contents of phenolic compounds, the contents of flavonoids, and the antioxidant activities of extracts from different methods of extracting the aerial part of an endemic medicinal plant from Morocco. This activity was also confirmed by three methods (2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant reducing power of iron (FRAP), and total antioxidant capacity (CAT)). The results showed that this plant is rich in polyphenols and flavonoids, as well as it has a very important antioxidant capacity in whatever the solvent or the extraction method. This suggests the importance of using extracts from this plant as a new natural source of food additives and potent antioxidants in the food industry.

Keywords: endemic plant of Morocco, phenolic compound, solvent, extraction technique, antioxidant activity

Procedia PDF Downloads 268
12510 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector

Authors: Dana M. Ragab, Jasim A Ghaeb

Abstract:

The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.

Keywords: power quality, space vector, unbalance evaluation, three-phase power system

Procedia PDF Downloads 164
12509 Perspective and Challenge of Tidal Power in Bangladesh

Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman

Abstract:

Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.

Keywords: sustainable energy, tidal power, cost analysis, power demand, gas crisis

Procedia PDF Downloads 464
12508 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture

Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne

Abstract:

Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.

Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization

Procedia PDF Downloads 110
12507 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 229
12506 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet

Procedia PDF Downloads 119
12505 Application of Crude Palm Oil Liquid Sludge Sewage On Maize (Zea mays. L) as Re-Cycle Possibility to Fertilizer

Authors: Hasan Basri Jumin, Henni Rosneti, Agusnimar

Abstract:

Crude palm oil liquid sludge sewage was treated to maize with 400 cc/plant could be increased mean relative growth rates, net assimilation rate, leaf area and dry weight of seed. There are indicated that 400 cc / plant treated to maize significantly increase the average of mean relative growth rates into 0.32 g.day-1. Net assimilation rates increase from 13.5 mg.m-2.day-1 into 34.5 mg.m-2.day-1, leaf area at 50 days after planting increase from 1419 cm-2 into 2458 cm-2 and dry weight of seed from 38 g per plant into 43 g per plant. Crude palm oil liquid sludge waste chemical analysis indicated that, there are no exceed threshold content of dangerous metals and biology effects. Cadmium content as heavy metal is lower than threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. Biological oxygen demands and chemical oxygen demands as indicators for micro-organism activities, there are under the threshold of human healthy tolerance.

Keywords: crude-palm-oil, fertilizer, liquid-sludge, maize, pollutant, waste

Procedia PDF Downloads 540
12504 Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery

Authors: Buket Boz, Alvaro Diez

Abstract:

Waste heat recovery by means of Organic Rankine Cycle is a promising technology for the recovery of engine exhaust heat. However, it is complex to find out the optimum cycle conditions with appropriate working fluids to match exhaust gas waste heat due to its high temperature. Hence, this paper focuses on comparing sub-critical and supercritical ORC conditions with eight working fluids on a combined diesel engine-ORC system. The model employs two ORC designs, Regenerative-ORC and Pre-Heating-Regenerative-ORC respectively. The thermodynamic calculations rely on the first and second law of thermodynamics, thermal efficiency and exergy destruction factors are the fundamental parameters evaluated. Additionally, in this study, environmental and safety, GWP (Global Warming Potential) and ODP (Ozone Depletion Potential), characteristic of the refrigerants are taken into consideration as evaluation criteria to define the optimal ORC configuration and conditions. Consequently, the studys outcomes reveal that supercritical ORCs with alkane and siloxane are more suitable for high temperature exhaust waste heat recovery in contrast to sub-critical conditions.

Keywords: internal combustion engine, organic Rankine cycle, waste heat recovery, working fluids

Procedia PDF Downloads 169
12503 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli

Authors: B. Chandar, M. K. Ramasamy, P. Madasamy

Abstract:

The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.

Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1

Procedia PDF Downloads 427
12502 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool

Procedia PDF Downloads 238
12501 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures

Authors: Dong Wook Lee

Abstract:

This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.

Keywords: computer aided engineering, finite element analysis, impact analysis, penetration analysis, composite material

Procedia PDF Downloads 97