Search results for: anaerobic metabolism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 774

Search results for: anaerobic metabolism

564 Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)

Authors: E. A. Abdel-Hakim

Abstract:

The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage.

Keywords: juvenile hormone, respiratory metabolism, Sesamia cretica, wandering phase

Procedia PDF Downloads 270
563 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 120
562 Development of a Human Skin Explant Model for Drug Metabolism and Toxicity Studies

Authors: K. K. Balavenkatraman, B. Bertschi, K. Bigot, A. Grevot, A. Doelemeyer, S. D. Chibout, A. Wolf, F. Pognan, N. Manevski, O. Kretz, P. Swart, K. Litherland, J. Ashton-Chess, B. Ling, R. Wettstein, D. J. Schaefer

Abstract:

Skin toxicity is poorly detected during preclinical studies, and drug-induced side effects in humans such as rashes, hyperplasia or more serious events like bullous pemphigus or toxic epidermal necrolysis represent an important hurdle for clinical development. In vitro keratinocyte-based epidermal skin models are suitable for the detection of chemical-induced irritancy, but do not recapitulate the biological complexity of full skin and fail to detect potential serious side-effects. Normal healthy skin explants may represent a valuable complementary tool, having the advantage of retaining the full skin architecture and the resident immune cell diversity. This study investigated several conditions for the maintenance of good morphological structure after several days of culture and the retention of phase II metabolism for 24 hours in skin explants in vitro. Human skin samples were collected with informed consent from patients undergoing plastic surgery and immediately transferred and processed in our laboratory by removing the underlying dermal fat. Punch biopsies of 4 mm diameter were cultured in an air-liquid interface using transwell filters. Different cultural conditions such as the effect of calcium, temperature and cultivation media were tested for a period of 14 days and explants were histologically examined after Hematoxylin and Eosin staining. Our results demonstrated that the use of Williams E Medium at 32°C maintained the physiological integrity of the skin for approximately one week. Upon prolonged incubation, the upper layers of the epidermis become thickened and some dead cells are present. Interestingly, these effects were prevented by addition of EGFR inhibitors such as Afatinib or Erlotinib. Phase II metabolism of the skin such as glucuronidation (4-methyl umbeliferone), sulfation (minoxidil), N-acetyltransferase (p-toluidene), catechol methylation (2,3-dehydroxy naphthalene), and glutathione conjugation (chlorodinitro benzene) were analyzed by using LCMS. Our results demonstrated that the human skin explants possess metabolic activity for a period of at least 24 hours for all the substrates tested. A time course for glucuronidation with 4-methyl umbeliferone was performed and a linear correlation was obtained over a period of 24 hours. Longer-term culture studies will indicate the possible evolution of such metabolic activities. In summary, these results demonstrate that human skin explants maintain a normal structure for several days in vitro and are metabolically active for at least the first 24 hours. Hence, with further characterisation, this model may be suitable for the study of drug-induced toxicity.

Keywords: human skin explant, phase II metabolism, epidermal growth factor receptor, toxicity

Procedia PDF Downloads 258
561 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 199
560 Functional Expression and Characterization of a Novel Indigenous Endo-Beta 1,4- Glucanase from Apis mellifera

Authors: Amtul Jamil Sami

Abstract:

Apis mellifera is an insect of immense economic importance lives on rich carbohydrate diet including cellulose, nectar, honey and pollen. The carbohydrate metabolism in A mellifera has not been understood fully, as there are no data available, on the functional expression of cellulase gene. The cellulose hydrolyzing enzyme is required for the digestion of pollen cellulose wall, to release the important nutrients (amino acids, minerals, vitamins etc.) from the pollen. A dissection of Apis genome had revealed that there is one gene present for the expression of endo-beta-1,4-glucanase, for cellulose hydrolysis. In the presented work, functional expression of endo-beta-1,4 glucanase gene is reported. Total soluble proteins of the honey bee were isolated and were tested cellulose hydrolyzing enzyme activity, using carboxy-methyl cellulose, as a substrate. A mellifera proteins were able to hydrolyze carboxy-methyl cellulose, confirming its endo- type mode of action. Endo beta-1,4 glucanase enzyme was only present in the gut tissues, no activity was detected in the salivary glands. The pH optima of the enzyme were in the acidic pH range of 4-5-5-0, indicating its metabolic role in the acidic stomach of A mellifera. The reported enzyme is unique, as endo-beta- 1,4 glucanase was able to generate non reducing sugar, as an end product. The results presented, are supportive to the information that the honey bee is capable of producing its novel endo-beta-1,4 glucanase. Further it could be helpful, in understanding, the carbohydrate metabolism in A mellifera.

Keywords: honey bees, Endo-beta 1, 4- glucanase, Apis mellifera, functional expression

Procedia PDF Downloads 370
559 Need for a National Newborn Screening Programme in India: Pilot Study Data

Authors: Sudheer Moorkoth, Leslie Edward Lewis, Pragna Rao

Abstract:

Newborn screening (NBS) is a part of routine newborn care in many countries worldwide to detect early any rare treatable conditions and inborn errors of metabolism (IEM). India has not started this program yet. In an attempt to understand the challenges in implementing a national newborn screening program in India, we initiated a pilot newborn screening project funded by the Government of Canada. Along with initiating the newborn screening at Kasturba Hospital, Manipal in South India, for screening six disorders (Congenital Hypothyroidism(CH), Congenital Adrenal Hyperplasia (CAH), Galactosemia, Biotinidase deficiency, Glucose-6-Phosphate Dehydrogenase deficiency (G-6PD) and Phenylketonurea), we also studied the awareness of various stakeholders on the newborn screening. In a period of nine months from August 2017 to March 2018 we could screen 1915 newborns (999 male and 916 female). The result showed that there were seven babies screened positive. This interim result points to an incidence rate of 1 in 270 children for these rare disorders collectively. This includes three confirmed cases of CH, two cases of G-6PD deficiency, and one case each for Galctosemia and CAH. A questionnaire based study to understand the awareness among various stakeholders revealed that there is little awareness among parents, adolescents and anganwadi workers (public health worker). The interim data points to the need for a national newborn screening programme in India. There is also an immediate need to undertake large-scale awareness programme to create knowledge on NBS among the various stakeholders.

Keywords: awareness, inborn errors of metabolism (IEM), newborn screening, rare disease

Procedia PDF Downloads 218
558 Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis

Authors: Nisha Govender, Siju Senan, Zeti-Azura Hussein, Wickneswari Ratnam

Abstract:

Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population.

Keywords: chlorophyll, gene expression, genetic variation, stomata

Procedia PDF Downloads 213
557 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System

Authors: Nungki Rositaningsih, Emil Budianto

Abstract:

Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.

Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel

Procedia PDF Downloads 227
556 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 19
555 Insufficiency of Cardioprotection at Adaptation to Chronic Hypoxia and at Remote Postconditioning in Young and Aged Rats with Metabolic Syndrome, the Role of Metabolic Disorders or Opioid Signaling

Authors: Natalia V. Naryzhnaya, Alexandr V. Mukhomedzyanov, Ivan A. Derkachev, Boris K. Kurbatov, Leonid N. Maslov

Abstract:

Background: Techniques of adaptation to hypoxia and remote postconditioning (RPost) have great prospects for use in the clinic. However, recent studies have shown low efficacy of remote postconditioning in patients with AMI. We hypothesize that the reasons for this inefficiency may be metabolic disorders, which are very common, especially in patients with cardiovascular disease, and age of patients. The purpose of the study was to reveal the effectiveness of adaptation to chronic hypoxia and RPost. To determine the possible relationship between the decrease in the effectiveness of projective impacts and disorders of carbohydrate and lipid metabolism. Design: The study was carried out on Wistar rats 60 day old. MetS was induced by high-carbohydrate, high-fat diet (HСHFD). Modeling MS led to the formation of obesity, hypertension, impaired lipid and carbohydrate metabolism, hyperleptinemia, and moderate stress. Groups with adaptation to chronic hypoxia were subjected to hypoxia for 21 days at 12% O2 and 0.3% CO2 after complete of HСHFD. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion. Groups with RPost, immediately after the end of ischemia, tourniquets were applied to the hind limbs in the area of the hip joint (3 times in the mode of 5 min ischemia, 5 min reperfusion). Results: RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with MetS, a decrease in infarct size during RPost was 25 % (p = 0.00003). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with MetC (r = 0.85). The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on serum leptin. Chronic hypoxia resulted in a 38% reduced in infarct size in metabolically intact rats. The decrease of cardioprotection was observed in rats with chronic hypoxia and MetS. Infarct size showed a direct correlation with impaired glucose tolerance (AUC, glucose tolerance test, r = 0.034) and serum triglyceride levels (r = 0.39). Our study showed the dependence of cardioprotection in rats with metabolic syndrome during chronic hypoxia and DPost on opioids in the blood serum and myocardium, protein kinase C and NO synthase activity. Conclusion: The results obtained showed that the infarct-limiting efficiency of adaptation to hypoxia and remote postconditioning is reduced or completely absent in animals with metabolic syndrome. The increase in the infarction, in this case, directly depends on the disturbances in carbohydrate. lipid metabolism and opioids signaling. Funding: Investigation of effectiveness of chronic hypoxia at the metabolic syndrome was carried out within the support of Russian Science Foundation Grant 22-15-00048. Studies of the mechanisms of arterial hypertension in induced metabolic syndrome were carried out within the framework of the state assignment (122020300042-4). The work was performed using the Center for Collective Use "Medical Genomics".

Keywords: chronic hypoxia, opioids, remote postconditioning, metabolic syndrome

Procedia PDF Downloads 56
554 Luteolin Exhibits Anti-Diabetic Effects by Increasing Oxidative Capacity and Regulating Anti-Oxidant Metabolism

Authors: Eun-Young Kwon, Myung-Sook Choi, Su-Jung Cho, Ji-Young Choi, So Young Kim, Youngji Han

Abstract:

Overweight and obesity have been linked to a low-grade chronic inflammatory response and an increased risk of developing metabolic syndrome including insulin resistance, type 2 diabetes mellitus and certain types of cancers. Luteolin is a dietary flavonoid with anti-inflammatory, anti-oxidant, anti-cancer and anti-diabetic properties. However, little is known about the detailed mechanism associated with the effect of luteolin on inflammation-related obesity and its complications. The aim of the present study was to reveal the anti-diabetic effect of luteolin in diet-induced obesity mice using “transcriptomics” tool. Thirty-nine male C57BL/6J mice (4-week-old) were randomly divided into 3 groups and were fed normal diet, high-fat diet (HFD, 20% fat) and HFD+0.005% (w/w) luteolin for 16 weeks. Luteolin improved insulin resistance, as measured by HOMA-IR and glucose tolerance, along with preservation action of pancreatic β-cells, compared to the HFD group. Luteoiln was significantly decreased the levels of leptin and ghrelin that play a pivotal role in energy balance, and the macrophage low-grade inflammation marker sCD163 (soluble Cd antigen 163) in plasma. Activities of hepatic anti-oxidant enzymes (catalase and glutathione peroxidase) were increased, while the levels of plasma transaminase (GOT and GPT) and oxidative damage markers (hepatic mitochondria H2O2 and TBARS) were markedly decreased by luteolin supplementation. In addition, luteolin increased oxidative capacity and fatty acid utilization by presenting decrease in enzyme activities of citrate synthase, cytochrome C oxidase and β-hydroxyacyl CoA dehydrogenase and UCP3 gene expression compared to high-fat diet. Moreover, our microarray results of muscle also revealed down-regulated gene expressions associated with TCA cycle by HFD were reversed to normal level by luteolin treatment. Taken together, our results indicate that luteolin is one of bioactive components for improving insulin resistance by increasing oxidative capacity, modulating anti-oxidant metabolism and suppressing inflammatory signaling cascades in diet-induced obese mice. These results provide possible therapeutic targets for prevention and treatment of diet-induced obesity and its complications.

Keywords: anti-oxidant metabolism, diabetes, luteolin, oxidative capacity

Procedia PDF Downloads 314
553 Life Cycle Assessment of Biogas Energy Production from a Small-Scale Wastewater Treatment Plant in Central Mexico

Authors: Joel Bonales, Venecia Solorzano, Carlos Garcia

Abstract:

A great percentage of the wastewater generated in developing countries don’t receive any treatment, which leads to numerous environmental impacts. In response to this, a paradigm change in the current wastewater treatment model based on large scale plants towards a small and medium scale based model has been proposed. Nevertheless, small scale wastewater treatment (SS-WTTP) with novel technologies such as anaerobic digesters, as well as the utilization of derivative co-products such as biogas, still presents diverse environmental impacts which must be assessed. This study consisted in a Life Cycle Assessment (LCA) performed to a SS-WWTP which treats wastewater from a small commercial block in the city of Morelia, Mexico. The treatment performed in the SS-WWTP consists in anaerobic and aerobic digesters with a daily capacity of 5,040 L. Two different scenarios were analyzed: the current plant conditions and a hypothetical energy use of biogas obtained in situ. Furthermore, two different allocation criteria were applied: full impact allocation to the system’s main product (treated water) and substitution credits for replacing Mexican grid electricity (biogas) and clean water pumping (treated water). The results showed that the analyzed plant had bigger impacts than what has been reported in the bibliography in the basis of wastewater volume treated, which may imply that this plant is currently operating inefficiently. The evaluated impacts appeared to be focused in the aerobic digestion and electric generation phases due to the plant’s particular configuration. Additional findings prove that the allocation criteria applied is crucial for the interpretation of impacts and that that the energy use of the biogas obtained in this plant can help mitigate associated climate change impacts. It is concluded that SS-WTTP is a environmentally sound alternative for wastewater treatment from a systemic perspective. However, this type of studies must be careful in the selection of the allocation criteria and replaced products, since these factors have a great influence in the results of the assessment.

Keywords: biogas, life cycle assessment, small scale treatment, wastewater treatment

Procedia PDF Downloads 100
552 Biosynthesis of Healthy Secondary Metabolites in Olive Fruit in Response to Different Agronomic Treatments

Authors: Anna Perrone, Federico Martinelli

Abstract:

Olive fruit is well-known for the high content in secondary metabolites with high interest at nutritional, nutraceutical, antioxidant, and healthy levels. The content of secondary metabolites in olive at harvest may be affected by different water regimes, with significant effects on olive oil composition and quality and, consequently, on its healthy and nutritional features. In this work, a summary of several research studies dealing with the biosynthesis of healthy and nutraceutical metabolites of the secondary metabolism in olive fruit will be reported. The phytochemical findings have been correlated with the expression of key genes involved in polyphenol, terpenoid, and carotenoid biosynthesis and metabolism in response to different development stages and water regimes. Flavonoids were highest in immature fruits, while anthocyanins increased at ripening. In epicarp tissue, this was clearly associated with an up-regulation of the UFGT gene. Olive fruits cultivated under different water regimes were analyzed by metabolomics. This method identified several hundred metabolites in the ripe mesocarp. Among them, 46 were differentially accumulated in the comparison between rain-fed and irrigated conditions. Well-known healthy metabolites were more abundant at a higher level of water regimes. Increased content of polyphenols was observed in the rain-fed fruit; particularly, anthocyanin concentration was higher at ripening. Several secondary metabolites were differentially accumulated between different irrigation conditions. These results showed that these metabolic approaches could be efficiently used to determine the effects of agronomic treatments on olive fruit physiology and, consequently, on nutritional and healthy properties of the obtained extra-virgin olive oil.

Keywords: olea europea, anthocyanins, polyphenols, water regimes

Procedia PDF Downloads 118
551 Feasibility of Applying a Hydrodynamic Cavitation Generator as a Method for Intensification of Methane Fermentation Process of Virginia Fanpetals (Sida hermaphrodita) Biomass

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The anaerobic degradation of substrates is limited especially by the rate and effectiveness of the first (hydrolytic) stage of fermentation. This stage may be intensified through pre-treatment of substrate aimed at disintegration of the solid phase and destruction of substrate tissues and cells. The most frequently applied criterion of disintegration outcomes evaluation is the increase in biogas recovery owing to the possibility of its use for energetic purposes and, simultaneously, recovery of input energy consumed for the pre-treatment of substrate before fermentation. Hydrodynamic cavitation is one of the methods for organic substrate disintegration that has a high implementation potential. Cavitation is explained as the phenomenon of the formation of discontinuity cavities filled with vapor or gas in a liquid induced by pressure drop to the critical value. It is induced by a varying field of pressures. A void needs to occur in the flow in which the pressure first drops to the value close to the pressure of saturated vapor and then increases. The process of cavitation conducted under controlled conditions was found to significantly improve the effectiveness of anaerobic conversion of organic substrates having various characteristics. This phenomenon allows effective damage and disintegration of cellular and tissue structures. Disintegration of structures and release of organic compounds to the dissolved phase has a direct effect on the intensification of biogas production in the process of anaerobic fermentation, on reduced dry matter content in the post-fermentation sludge as well as a high degree of its hygienization and its increased susceptibility to dehydration. A device the efficiency of which was confirmed both in laboratory conditions and in systems operating in the technical scale is a hydrodynamic generator of cavitation. Cavitators, agitators and emulsifiers constructed and tested worldwide so far have been characterized by low efficiency and high energy demand. Many of them proved effective under laboratory conditions but failed under industrial ones. The only task successfully realized by these appliances and utilized on a wider scale is the heating of liquids. For this reason, their usability was limited to the function of heating installations. Design of the presented cavitation generator allows achieving satisfactory energy efficiency and enables its use under industrial conditions in depolymerization processes of biomass with various characteristics. Investigations conducted on the laboratory and industrial scale confirmed the effectiveness of applying cavitation in the process of biomass destruction. The use of the cavitation generator in laboratory studies for disintegration of sewage sludge allowed increasing biogas production by ca. 30% and shortening the treatment process by ca. 20 - 25%. The shortening of the technological process and increase of wastewater treatment plant effectiveness may delay investments aimed at increasing system output. The use of a mechanical cavitator and application of repeated cavitation process (4-6 times) enables significant acceleration of the biogassing process. In addition, mechanical cavitation accelerates increases in COD and VFA levels.

Keywords: hydrodynamic cavitation, pretreatment, biomass, methane fermentation, Virginia fanpetals

Procedia PDF Downloads 410
550 From Biowaste to Biobased Products: Life Cycle Assessment of VALUEWASTE Solution

Authors: Andrés Lara Guillén, José M. Soriano Disla, Gemma Castejón Martínez, David Fernández-Gutiérrez

Abstract:

The worldwide population is exponentially increasing, which causes a rising demand for food, energy and non-renewable resources. These demands must be attended to from a circular economy point of view. Under this approach, the obtention of strategic products from biowaste is crucial for the society to keep the current lifestyle reducing the environmental and social issues linked to the lineal economy. This is the main objective of the VALUEWASTE project. VALUEWASTE is about valorizing urban biowaste into proteins for food and feed and biofertilizers, closing the loop of this waste stream. In order to achieve this objective, the project validates three value chains, which begin with the anaerobic digestion of the biowaste. From the anaerobic digestion, three by-products are obtained: i) methane that is used by microorganisms, which will be transformed into microbial proteins; ii) digestate that is used by black soldier fly, producing insect proteins; and iii) a nutrient-rich effluent, which will be transformed into biofertilizers. VALUEWASTE is an innovative solution, which combines different technologies to valorize entirely the biowaste. However, it is also required to demonstrate that the solution is greener than other traditional technologies (baseline systems). On one hand, the proteins from microorganisms and insects will be compared with other reference protein production systems (gluten, whey and soybean). On the other hand, the biofertilizers will be compared to the production of mineral fertilizers (ammonium sulphate and synthetic struvite). Therefore, the aim of this study is to provide that biowaste valorization can reduce the environmental impacts linked to both traditional proteins manufacturing processes and mineral fertilizers, not only at a pilot-scale but also at an industrial one. In the present study, both baseline system and VALUEWASTE solution are evaluated through the Environmental Life Cycle Assessment (E-LCA). The E-LCA is based on the standards ISO 14040 and 14044. The Environmental Footprint methodology was the one used in this study to evaluate the environmental impacts. The results for the baseline cases show that the food proteins coming from whey have the highest environmental impact on ecosystems compared to the other proteins sources: 7.5 and 15.9 folds higher than soybean and gluten, respectively. Comparing feed soybean and gluten, soybean has an environmental impact on human health 195.1 folds higher. In the case of biofertilizers, synthetic struvite has higher impacts than ammonium sulfate: 15.3 (ecosystems) and 11.8 (human health) fold, respectively. The results shown in the present study will be used as a reference to demonstrate the better environmental performance of the bio-based products obtained through the VALUEWASTE solution. Other originalities that the E-LCA performed in the VALUEWASTE project provides are the diverse direct implications on investment and policies. On one hand, better environmental performance will serve to remove the barriers linked to these kinds of technologies, boosting the investment that is backed by the E-LCA. On the other hand, it will be a germ to design new policies fostering these types of solutions to achieve two of the key targets of the European Community: being self-sustainable and carbon neutral.

Keywords: anaerobic digestion, biofertilizers, circular economy, nutrients recovery

Procedia PDF Downloads 70
549 Beneficial Effect of Chromium Supplementation on Glucose, HbA1C and Lipid Variables in Individuals with Newly Onset Type-2 Diabetes

Authors: Baljinder Singh, Navneet Sharma

Abstract:

Chromium is an essential nutrient involved in normal carbohydrate and lipid metabolism. It influences glucose metabolism by potentiating the action as taking part in insulin signal amplification mechanism. A placebo-controlled single blind, prospective study was carried out to investigate the effect of chromium supplementation on blood glucose, HbA1C and lipid profile in newly onset patients with type-2 diabetes. Total 40 newly onset type-2 diabetics were selected and after one month stabilization further randomly divided into two groups viz. study group and placebo group. The study group received 9 gm brewer’s yeast (42 μ Cr) daily and the other placebo group received yeast devoid of chromium for 3 months. Subjects were instructed not to change their normal eating and living habits. Fasting blood glucose, HbA1C and lipid profile were analyzed at beginning and completion of the study. Results revealed that fasting blood glucose level significantly reduced in the subjects consuming yeast supplemented with chromium (197.65±6.68 to 103.68±6.64 mg/dl; p<0.001). HbA1C values improved significantly from 9.51±0.26% to 6.86±0.28%; p<0.001 indicating better glycaemic control. In experimental group total cholesterol, TG and LDL levels were also significantly reduced from 199.66±3.11 to 189.26±3.01 mg/dl; p<0.02, 144.94±8.31 to 126.01±8.26; p<0.05 and 119.19±1.71 to 99.58±1.10; p<0.001 respectively. These data demonstrate beneficial effect of chromium supplementation on glycaemic control and lipid variables in subjects with newly onset type-2 diabetes.

Keywords: type-2 diabetes, chromium, glucose, HbA1C

Procedia PDF Downloads 216
548 Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress

Authors: Zhang Lei, Zhao Qingrong, Wang Chen, Zhang Sufang, Zhang Hanguo

Abstract:

Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance.

Keywords: larch, drought stress, full-length transcriptome sequencing, differentially expressed genes

Procedia PDF Downloads 132
547 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor

Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez

Abstract:

Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.

Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste

Procedia PDF Downloads 84
546 Sustainable Integrated Waste Management System

Authors: Lidia Lombardi

Abstract:

Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.

Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste

Procedia PDF Downloads 28
545 Biotechnological Recycling of Apple By-Products: A Reservoir Model to Produce a Dietary Supplement Fortified with Biogenic Phenolic Compounds

Authors: Ali Zein Aalabiden Tlais, Alessio Da Ros, Pasquale Filannino, Olimpia Vincentini, Marco Gobbetti, Raffaella Di Cagno

Abstract:

This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, antioxidant activity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the Liquid chromatography-mass spectrometry validated method. The accumulation of phenolic acid derivatives highlighted microbial metabolism during AP fermentation. Bio-converted phenolic compounds were likely responsible for the increased antioxidant activity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells and preserved the integrity of tight junctions. An alternative and suitable model for food by-products recycling to manufacture a dietary supplement fortified with biogenic compounds was proposed. Highlighting the microbial metabolism of several phenolic compounds, undoubted additional value to such downstream wastes was created.

Keywords: apple by-products, antioxidant, fermentation, phenolic compounds

Procedia PDF Downloads 115
544 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 68
543 Quantitative Analysis of Orphan Nuclear Receptors in Insulin Resistant C2C12 Skeletal Muscle Cells

Authors: Masocorro Gawned, Stephen Myers, Guat Siew Chew

Abstract:

Nuclear Receptors (NR) are a super family of transcription factors that play a major role in lipid and glucose metabolism in skeletal muscle. Recently, pharmacological evidence supports the view that stimulation of nuclear receptors alleviates Type 2 Diabetes (T2D). The orphan nuclear receptors (ONR) are members of the nuclear receptor (NR) superfamily whose ligands and physiological functions remain unknown. To date, no systematic studies have been carried out to screen for ONRs expressed in insulin resistant (IR) skeletal muscle cells. Therefore, in this study, we have established a model for IR by treating C2C12 skeletal muscle cells with insulin (10nM) for 48 hours. Western Blot analysis of phosphorylated AKT confirmed IR. Real-time quantitative polymerase chain reaction (qPCR) results highlighted key ONRs including NUR77 (NR4A1), NURR1 (NR4A2) and NOR1 (NR4A3) which have been associated with fatty acid oxidation regulation and glucose homeostasis. Increased mRNA expression levels of estrogen-related receptors (ERRs), REV-ERBα, NUR77, NURR1, NOR1, in insulin resistant C2C12 skeletal muscle cells, indicated that these ONRs could potentially play a pivotal regulatory role of insulin secretion in lipid metabolism. Taken together, this study has successfully contributed to the complete analysis of ONR in IR, and has filled in an important void in the study and treatment of T2D.

Keywords: type 2 diabetes, orphan nuclear receptors, transcription receptors, quantitative mRNA expression

Procedia PDF Downloads 406
542 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage

Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel

Abstract:

Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.

Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment

Procedia PDF Downloads 305
541 Fastidious Enteric Pathogens in HIV

Authors: S. Pathak, R. Lazarus

Abstract:

A 25-year-old male HIV patient (CD4 cells 20/µL and HIV viral load 14200000 copies/ml) with a past medical history of duodenal ulcer, pneumocystis carinii pneumonia, oesophageal candidiasis presented with fever and a seizure to hospital. The only recent travel had been a religious pilgrimage from Singapore to Malaysia 5 days prior; during the trip he sustained skin abrasions. The patient had recently started highly active antiretroviral therapy 2 months prior. Clinical examination was unremarkable other than a temperature of 38.8°C and perianal warts. Laboratory tests showed a leukocyte count 12.5x109 cells/L, haemoglobin 9.4 g/dL, normal biochemistry and a C-reactive protein 121 mg/L. CT head and MRI head were unremarkable and cerebrospinal fluid analysis performed after a delay (due to technical difficulties) of 11 days was unremarkable. Blood cultures (three sets) taken on admission showed Gram-negative rods in the anaerobic bottles only at the end of incubation with culture result confirmed by molecular sequencing showing Helicobacter cinaedi. The patient was treated empirically with ceftriaxone for seven days and this was converted to oral co-amoxiclav for a further seven days after the blood cultures became positive. A Transthoracic echocardiogram was unremarkable. The patient made a full recovery. Helicobacter cinaedi is a gram-negative anaerobic fastidious organism affecting patients with comorbidity. Infection may manifest as cellulitius, colitis or as in this case as bloodstream infection – the latter is often attributed to faeco-oral infection. Laboratory identification requires prolonged culture. Therapeutic options may be limited by resistance to macrolides and fluoroquinolones. The likely pathogen inoculation routes in the case described include gastrointestinal translocation due to proctitis at the site of perianal warts, or breach of the skin via abrasions occurring during the pilgrimage. Such organisms are increasing in prevalence as our patient population ages and patients have multiple comorbidities including HIV. It may be necessary in patients with unexplained fever to prolong incubation of sterile sites including blood in order to identify this unusual fastidious organism.

Keywords: fastidious, Helicobacter cinaedi, HIV, immunocompromised

Procedia PDF Downloads 358
540 Increasing Solubility and Bioavailability of Fluvastatin through Transdermal Nanoemulsion Gel Delivery System for the Treatment of Osteoporosis

Authors: Ramandeep Kaur, Makula Ajitha

Abstract:

Fluvastatin has been reported for increasing bone mineral density in osteoporosis since last decade. Systemically administered drug undergoes extensive hepatic first-pass metabolism, thus very small amount of drug reaches the bone tissue which is highly insignificant. The present study aims to deliver fluvastatin in the form of nanoemulsion (NE) gel directly to the bone tissue through transdermal route thereby bypassing hepatic first pass metabolism. The NE formulation consisted of isopropyl myristate as oil, tween 80 as surfactant, transcutol as co-surfactant and water as the aqueous phase. Pseudoternary phase diagrams were constructed using aqueous titration method and NE’s obtained were subjected to thermodynamic-kinetic stability studies. The stable NE formulations were evaluated for their droplet size, zeta potential, and transmission electron microscopy (TEM). The nano-sized formulations were incorporated into 0.5% carbopol 934 gel matrix. Ex-vivo permeation behaviour of selected formulations through rat skin was investigated and compared with the conventional formulations (suspension and emulsion). Further, in-vivo pharmacokinetic study was carried using male Wistar rats. The optimized NE formulations mean droplet size was 11.66±3.2 nm with polydispersity index of 0.117. Permeation flux of NE gel formulations was found significantly higher than the conventional formulations i.e. suspension and emulsion. In vivo pharmacokinetic study showed significant increase in bioavailability (1.25 fold) of fluvastatin than oral formulation. Thus, it can be concluded that NE gel was successfully developed for transdermal delivery of fluvastatin for the treatment of osteoporosis.

Keywords: fluvastatin, nanoemulsion gel, osteoporosis, transdermal

Procedia PDF Downloads 167
539 Functional Aspects of Carbonic Anhydrase

Authors: Bashistha Kumar Kanth, Seung Pil Pack

Abstract:

Carbonic anhydrase is ubiquitously distributed in organisms, and is fundamental to many eukaryotic biological processes such as photosynthesis, respiration, CO2 and ion transport, calcification and acid–base balance. However, CA occurs across the spectrum of prokaryotic metabolism in both the archaea and bacteria domains and many individual species contain more than one class. In this review, various roles of CA involved in cellular mechanism are presented to find out the CA functions applicable for industrial use.

Keywords: carbonic anhydrase, mechanism, CO2 sequestration, respiration

Procedia PDF Downloads 467
538 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease

Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette

Abstract:

Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.

Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment

Procedia PDF Downloads 318
537 An Increase in Glucose Uptake per se is Insufficient to Induce Oxidative Stress and Vascular Endothelial Cell Dysfunction

Authors: Heba Khader, Victor Solodushko, Brian Fouty

Abstract:

Hyperglycemia is a hallmark of uncontrolled diabetes and causes vascular endothelial dysfunction. An increase in glucose uptake and metabolism by vascular endothelial cells is the presumed trigger for this hyperglycemia-induced dysfunction. Glucose uptake into vascular endothelial cells is mediated largely by Glut-1. Glut-1 is an equilibrative glucose transporter with a Km value of 2 mM. At physiologic glucose concentrations, Glut-1 is almost saturated and, therefore, increasing glucose concentration does not increase glucose uptake unless Glut-1 is upregulated. However, hyperglycemia downregulates Glut-1 and decreases rather than increases glucose uptake in vascular endothelial cells. This apparent discrepancy necessitates further study on the effect of increasing glucose uptake on the oxidative state and function of vascular endothelial cells. To test this, a Tet-on system was generated to conditionally regulate Glut-1 expression in endothelial cells by the addition and removal of doxycycline. Glut-1 overexpression was confirmed by Western blot and radiolabeled glucose uptake measurements. Upregulation of Glut-1 resulted in a 4-fold increase in glucose uptake into endothelial cells as determined by 3H deoxy-D-glucose uptake. Increased glucose uptake through Glut-1 did not induce an oxidative stress nor did it cause endothelial dysfunction in rat pulmonary microvascular endothelial cells determined by monolayer resistance, cell proliferation or advanced glycation end product formation. Increased glucose uptake through Glut-1did not lead to an increase in glucose metabolism, due in part to inhibition of hexokinase in Glut-1 overexpressing cells. In summary, this study demonstrates that increasing glucose uptake and intracellular glucose by overexpression of Glut-1 does not alter the oxidative state of rat pulmonary microvascular endothelial cells or cause endothelial cell dysfunction. These results conflict with the current paradigm that hyperglycemia leads to oxidative stress and endothelial dysfunction in vascular endothelial cells through an increase in glucose uptake.

Keywords: endothelial cells, glucose uptake, Glut1, hyperglycemia

Procedia PDF Downloads 313
536 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats

Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker

Abstract:

The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.

Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics

Procedia PDF Downloads 127
535 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis

Authors: Xi Chen, King-Yip Cheng

Abstract:

Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.

Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes

Procedia PDF Downloads 40