Search results for: transparent solar cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5212

Search results for: transparent solar cell

2872 Cocoa Stimulates the Production Bioactive Components of Lactobacillus Casei and Competitively Excludes Foodborne Pathogens

Authors: Mengfei Peng, Serajus Salaheen, Debabrata Biswas

Abstract:

Lactobacillus casei found in the human intestine and mouth is commonly applied for dairy production. Recently, it was found that some byproducts produced by Lactobacillus exhibited antimicrobial activities against multiple bacteria. Meanwhile, introduction of prebiotic-like foods (e.g. cocoa) or probiotics or both of them as food supplements in human diets as well as in farm animal feeds is believed to be an effective ways in control/reduce the colonization of foodborne bacterial pathogens infection in the gut environment. We hypothesized that cocoa may stimulate the production antimicrobial components of Lactobacillus casei and may potentially inhibit/reduce the colonization and infection of foodborne bacterial pathogens in the gut. Mixed culture of L. casei (LC) with enterohemorrhagic E. coli EDL933 (EHEC), Salmonella Typhimurium LT2 (ST), or Listeria monocytogenes LM2 (LM) showed that LC could competitively exclude (100%) them within 72 h. Further, investigation of cell-free culture supernatant (CFCS) revealed that the antimicrobial effects of LC came from CFCS. CFCS of LC eliminated (100%) EHEC, ST, and LM within 72 h, and 2 h CFCS treatment increased the hydrophobicity of EHEC (5.10 folds), ST (8.48 folds), and LM (2.03 folds). In addition, LC cells exhibited more inhibitive effects than CFCS on cell adhesive and invasive activities of EHEC (52.14% & 90.45%), ST (66.89% & 93.83%), and LM (61.10% & 83.40%). Two clusters of poly-peptides in CFCS were identified by SDS-PAGE, the molecular weights of which are ≈5 KD and 40-45 KD. LC CFCS with overnight growth in the presence of 3% strengthened all of the antimicrobial activities (growth inhibition, outer membrane disruption, and cell infective ability reduction). Liquid chromatography/Mass spectrometry analysis detected 5 unique components in class of flavonoids in LC CFCS with overnight 3% cocoa supplement. Furthermore, qPCR results showed that CFCSs up-regulated the expression level of genes responsible for flagellin synthesis and motility, but down-regulated genes for specific binding and invasion-associated proteins synthesis. The stimulatory effects of cocoa in producing bioactive components of probiotics may aid prevention of foodborne illness caused by major foodborne enteric bacterial pathogens.

Keywords: foodborne pathogens, probiotics, prebiotics, pathogen exclusion

Procedia PDF Downloads 420
2871 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve

Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.

Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve

Procedia PDF Downloads 290
2870 Heat Transfer Coefficients of Layers of Greenhouse Thermal Screens

Authors: Vitaly Haslavsky, Helena Vitoshkin

Abstract:

The total energy saving effect of different types of greenhouse thermal/shade screens was determined by measuring and calculating the overall heat transfer coefficients (U-values) for single and several layers of screens. The measurements were carried out using the hot box method, and the calculations were performed according to the ISO Standard 15099. The goal was to examine different types of materials with a wide range of thermal radiation properties used for thermal screens in combination with a dehumidification system in order to improve greenhouse insulation. The experimental results were in good agreement with the calculated heat transfer coefficients. It was shown that a high amount of infra-red (IR) radiation can be blocked by the greenhouse covering material in combination with moveable thermal screens. The aluminum foil screen could be replaced by transparent screens, depending on shading requirements. The results indicated that using a single layer, the U-value was reduced by approximately 70% compared to covering material alone, while the contributions of additional screen layers containing aluminum foil strips could reduce the U-value by approximately 90%. It was shown that three screen layers are sufficient for effective insulation.

Keywords: greenhouse insulation, heat loss, thermal screens, U-value

Procedia PDF Downloads 105
2869 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.

Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes

Procedia PDF Downloads 142
2868 Photo-Electrochemical/Electro-Fenton Coupling Oxidation System with Fe/Co-Based Anode and Cathode Metal-Organic Frameworks Derivative Materials for Sulfamethoxazole Treatment

Authors: Xin Chen, Xinyong Li, Qidong Zhao, Dong Wang

Abstract:

A new coupling system was constructed by combining photo-electrochemical cell with electro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photoinduced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.

Keywords: electro-fenton, photo-electrochemical, synergic effect, sulfamethoxazole

Procedia PDF Downloads 174
2867 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review

Authors: G. W. Greubel, A. Kalam

Abstract:

South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues, but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be spared the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’ which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid. This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy.

Keywords: load shedding, renewable energy integration, smart grid, virtual grid

Procedia PDF Downloads 45
2866 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 123
2865 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 52
2864 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 191
2863 Design Criteria for an Internal Information Technology Cost Allocation to Support Business Information Technology Alignment

Authors: Andrea Schnabl, Mario Bernhart

Abstract:

The controlling instrument of an internal cost allocation (IT chargeback) is commonly used to make IT costs transparent and controllable. Information Technology (IT) became, especially for information industries, a central competitive factor. Consequently, the focus is not on minimizing IT costs but on the strategic aligned application of IT. Hence, an internal IT cost allocation should be designed to enhance the business-IT alignment (strategic alignment of IT) in order to support the effective application of IT from a company’s point of view. To identify design criteria for an internal cost allocation to support business alignment a case study analysis at a typical medium-sized firm in information industry is performed. Documents, Key Performance Indicators, and cost accounting data over a period of 10 years are analyzed and interviews are performed. The derived design criteria are evaluated by 6 heads of IT departments from 6 different companies, which have an internal IT cost allocation at use. By applying these design criteria an internal cost allocation serves not only for cost controlling but also as an instrument in strategic IT management.

Keywords: accounting for IT services, Business IT Alignment, internal cost allocation, IT controlling, IT governance, strategic IT management

Procedia PDF Downloads 151
2862 Top-Down Approach for Fabricating Hematite Nanowire Arrays

Authors: Seungmin Shin, Jin-Baek Kim

Abstract:

Hematite (α-Fe2O3) has very good semiconducting properties with a band gap of 2.1 eV and is antiferromagnetic. Due to its electrochemical stability, low toxicity, wide abundance, and low-cost, hematite, it is a particularly attractive material for photoelectrochemical cells. Additionally, hematite has also found applications in gas sensing, field emission, heterogeneous catalysis, and lithium-ion battery electrodes. Here, we discovered a new universal top-down method for the synthesis of one-dimensional hematite nanowire arrays. Various shapes and lengths of hematite nanowire have been easily fabricated over large areas by sequential processes. The obtained hematite nanowire arrays are promising candidates as photoanodes in photoelectrochemical solar cells.

Keywords: hematite, lithography, nanowire, top-down process

Procedia PDF Downloads 240
2861 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 319
2860 TiO2 Solar Light Photocatalysis a Promising Treatment Method of Wastewater with Trinitrotoluene Content

Authors: Ines Nitoi, Petruta Oancea, Lucian Constantin, Laurentiu Dinu, Maria Crisan, Malina Raileanu, Ionut Cristea

Abstract:

2,4,6-Trinitrotoluene (TNT) is the most common pollutant identified in wastewater generated from munitions plants where this explosive is synthesized or handled (munitions load, assembly and pack operations). Due to their toxic and suspected carcinogenic characteristics, nitroaromatic compounds like TNT are included on the list of prioritary pollutants and strictly regulated in EU countries. Since their presence in water bodies is risky for human health and aquatic life, development of powerful, modern treatment methods like photocatalysis are needed in order to assures environmental pollution mitigation. The photocatalytic degradation of TNT was carried out at pH=7.8, in aqueous TiO2 based catalyst suspension, under sunlight irradiation. The enhanced photo activity of catalyst in visible domain was assured by 0.5% Fe doping. TNT degradation experiments were performed using a tubular collector type solar photoreactor (26 UV permeable silica glass tubes series connected), plug in a total recycle loops. The influence of substrate concentration and catalyst dose on the pollutant degradation and mineralization by-products (NO2-, NO3-, NH4+) formation efficiencies was studied. In order to compare the experimental results obtained in various working conditions, the pollutant and mineralization by-products measured concentrations have been considered as functions of irradiation time and cumulative photonic energy Qhν incident on the reactor surface (kJ/L). In the tested experimental conditions, at tens mg/L pollutant concentration, increase of 0,5%-TiO2 dose up to 200mg/L leads to the enhancement of CB degradation efficiency. Since, doubling of TNT content has a negative effect on pollutant degradation efficiency, in similar experimental condition, prolonged irradiation time from 360 to 480 min was necessary in order to assures the compliance of treated effluent with limits imposed by EU legislation (TNT ≤ 10µg/L).

Keywords: wastewater treatment, TNT, photocatalysis, environmental engineering

Procedia PDF Downloads 349
2859 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast

Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho

Abstract:

UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.

Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast

Procedia PDF Downloads 230
2858 Treatment of Full-Thickness Rotator Cuff Tendon Tear Using Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Polydeoxyribonucleotides in a Rabbit Model

Authors: Sang Chul Lee, Gi-Young Park, Dong Rak Kwon

Abstract:

Objective: The aim of this study was to investigate regenerative effects of ultrasound (US)-guided injection with human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and/or polydeoxyribonucleotide (PDRN) injection in a chronic traumatic full-thickness rotator cuff tendon tear (FTRCTT) in a rabbit model. Material and Methods: Rabbits (n = 32) were allocated into 4 groups. After a 5-mm sized FTRCTT just proximal to the insertion site on the subscapularis tendon was created by excision, the wound was immediately covered by silicone tube to prevent natural healing. After 6 weeks, 4 injections (0.2 mL normal saline, G1; 0.2 mL PDRN, G2; 0.2 mL UCB-MSCs, G3; and 0.2 mL UCB-MSCs with 0.2ml PDRN, G4) were injected into FTRCTT under US guidance. We evaluated gross morphologic changes on all rabbits after sacrifice. Masson’s trichrome, anti-type 1 collagen antibody, bromodeoxyuridine, proliferating cell nuclear antigen, vascular endothelial growth factor and platelet endothelial cell adhesion molecule stain were performed to evaluate histological changes. Motion analysis was also performed. Results: The gross morphologic mean tendon tear size in G3 and 4 was significantly smaller than that of G1 and 2 (p < .05). However, there were no significant differences in tendon tear size between G3 and 4. In G4, newly regenerated collagen type 1 fibers, proliferating cells activity, angiogenesis, walking distance, fast walking time, and mean walking speed were greater than in the other three groups on histological examination and motion analysis. Conclusion: Co-injection of UCB-MSCs and PDRN was more effective than UCB-MSCs injection alone in histological and motion analysis in a rabbit model of chronic traumatic FTRCTT. However, there was no significant difference in gross morphologic change of tendon tear between UCB-MSCs with/without PDRN injection. The results of this study regarding the combination of UCB-MSCs and PDRN are worth additional investigations.

Keywords: mesenchymal stem cell, umbilical cord, polydeoxyribonucleotides, shoulder, rotator cuff, ultrasonography, injections

Procedia PDF Downloads 180
2857 Factors Associated to Down Syndrome Causes in Patients of Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran in 2014─2015

Authors: Bremmy Laksono, Nurul Qomarilla, Riksa Parikrama, Dyan K. Nugrahaeni, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani

Abstract:

Down syndrome is a chromosomal abnormality of chromosome 21 which can appear in man or woman. Maternal age and paternal age, history of radiation are the common risk factors. This study was conducted to observe risk factors which related as causes of Down syndrome. In this case control study using purposive sampling technique, 84 respondents were chosen from Cell Culture and Cytogenetics Laboratory patients in Faculty of Medicine, Universitas Padjadjaran, Indonesia. They were used as study samples and divided into 42 Down syndrome cases and 42 control respondents. This study used univariate and bivariate analysis (chi-square). Samples population were West Java residents, the biggest province in Indonesia in number of population. The results showed maternal age, paternal age, history of radiation exposure and family history were not significantly related to Down syndrome baby. Moreover, all of those factors also did not contribute to the risk of having a child with Down syndrome in patients at Cell Culture and Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran. Therefore, we should investigate other risk factors of Down syndrome in West Java population.

Keywords: down syndrome, family history, maternal age, paternal age, risk factor

Procedia PDF Downloads 394
2856 A Cross-Sectional Study on the Nutritional Status of School Going Children From Urban and Rural Populations of Pakistan

Authors: Aftab Ahmed, Farhan Saeed, Muhammad Afzaal, Shinawar Waseem Ali, Ali Imran, Sadaf Munir

Abstract:

Malnutrition is a globally increasing public health concern among children; it affects number of school children influencing their growth, development and academic performance. The tenet of the current cross sectional study was to assess the nutritional biomarkers of school going children of age 12-15 years resulting in stunting, underweight, overweight, bone deformities and other health disparities in nutritionally deprived urban and rural populations of Pakistan. A sample size comprising of 180 school going children was stipulated from the targeted urban and rural populations. The fallouts of investigation unveiled that both rural and urban populations were experiencing nutritional challenges however; on account of awareness paucity the rustic population was nutritionally more compromised. Hematological tests elucidated 16.7% and 7.8% cases for high glucose level, 35.6% and 27.8% cases for low hemoglobin levels, 14.4% and 15.6% cases for low calcium indices, 12.2% and 4.4% high white blood cell count (WBC), 20% and 14.4% low red blood cell count, 76.7% and 74.4% low hematocrit (HCT) values, among the rural and urban populations respectively. The above mentioned outcomes can serve as a way forward for policy and law maker institutions to curb the possible barricades in the way of healthy nutritional status in these areas

Keywords: malnutrition, hematological study, child nutrition, bone mineral density, calcium, RBC

Procedia PDF Downloads 71
2855 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 127
2854 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 367
2853 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste

Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet

Abstract:

Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.

Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor

Procedia PDF Downloads 104
2852 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 128
2851 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation

Authors: Anupuma Raina, Ajay Parkash

Abstract:

In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.

Keywords: chimerism, HSCT, STRs analysis, forensic identification

Procedia PDF Downloads 57
2850 VHL, PBRM1, and SETD2 Genes in Kidney Cancer: A Molecular Investigation

Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan

Abstract:

Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p > 0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.

Keywords: kidney cancer, molecular biomarker, expression analysis, mutation screening

Procedia PDF Downloads 446
2849 In vitro Cytotoxicity Study on Silver Powders Synthesized via Different Routes

Authors: Otilia Ruxandra Vasile, Ecaterina Andronescu, Cristina Daniela Ghitulica, Bogdan Stefan Vasile, Roxana Trusca, Eugeniu Vasile, Alina Maria Holban, Carmen Mariana Chifiriuc, Florin Iordache, Horia Maniu

Abstract:

Engineered powders offer great promise in several applications, but little information is known about cytotoxicity effects. The aim of the current study was the synthesis and cytotoxicity examination of silver powders using pyrosol method at temperatures of 600°C, 650°C and 700°C, respectively sol-gel method and calcinations at 500°C, 600°C, 700°C and 800°C. We have chosen to synthesize and examine silver particles cytotoxicity due to its use in biological applications. The synthesized Ag powders were characterized from the structural, compositional and morphological point of view by using XRD, SEM, and TEM with SAED. In order to determine the influence of the synthesis route on Ag particles cytotoxicity, different sizes of micro and nanosilver synthesized powders were evaluated for their potential toxicity. For the study of their cytotoxicity, cell cycle and apoptosis have been done analysis through flow cytometry on human colon carcinoma cells and mesenchymal stem cells and through the MTT assay, while the viability and the morphological changes of the cells have been evaluated by using cloning studies. The results showed that the synthesized silver nanoparticles have displayed significant cytotoxicity effects on cell cultures. Our synthesized silver powders were found to present toxicity in a synthesis route and time-dependent manners for pyrosol synthesized nanoparticles; whereas a lower cytotoxicity has been measured after cells were treated with silver nanoparticles synthesized through sol-gel method.

Keywords: Ag, cytotoxicity, pyrosol method, sol-gel method

Procedia PDF Downloads 581
2848 The Single-Level Structure in Lucid Dreams

Authors: Jinshuo Zhang

Abstract:

Lucid dreams(LD) are the mental states in which people are aware that they are dreaming, which is a rising interdisciplinary topic among psychologists, neuroscientists and spiritual practitioners. From a phenomenological perspective, this research explores the self-consciousness structure in lucid dreams, particularly focusing on the self-reference structure between lucidity(the observer) and the dream ego(the observed). The main argument of this paper is that the self-structure in lucid dreams is a single-level paradigm. In this paper, the phenomenological characteristics of lucidity in LD are carefully unfolded. The appearance of lucidity is the most significant part of understanding the self-structure and the consciousness in dreams, which is also related to the “Six Bardos practices” in Tibetan Buddhism. In the second section, this research investigates the referential relationship between"lucidity" and "the dream ego" using the phenomenological resource of subjectivity theory, as well as referring to many cases in the psychological labs. Despite the appearance of various consciousness layers in lucid dreams, according to this paper, they are all part of a single-level consciousness paradigm. Dream ego is transparent, and dream lucidity can grasp it directly and thoroughly during LD. This research also responds to some potential criticisms and engages in current debates about the self-structure issue in lucid dreams, as well as discussing some future research prospects for dreams and lucid dreams.

Keywords: lucid dream, self-awareness, phenomenological perspective, high-order theory, one-level consciousness

Procedia PDF Downloads 82
2847 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds

Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui

Abstract:

The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.

Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.

Procedia PDF Downloads 10
2846 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 119
2845 Evaluation of ROS Mediated Apoptosis Induced by Tuber Extract of Dioscorea Bulbifera on Human Breast Adenocarcinoma

Authors: Debasmita Dubey, Rajesh Kumar Meher, Smruti Pragya Samal, Pradeep Kumar Naik

Abstract:

Background: To determine antioxidant properties and anticancer activity by ROS and mitochondrial transmembrane potential mediated apoptosis against MCF7, MDA-MB-231, cell line. Methods: Leaf sample was extracted using methanol by microwave digestion technique. The antioxidant properties of the methanolic extract were determined by a DPPH scavenging assay. In vitro anticancer activity, mitochondrial transmembrane potential, apoptosis activity and DNA fragmentation study, as well as intracellular ROS activity of most potential leaf extract, were also determined by using the MDA-MB-231cell line. In vivo animal toxicity study was carried out using mice model. Results: Methanolic leaf extract has shown the highest antioxidant, as well as anticancer activity, is based on the assay conducted. For the identification of active phytochemicals from methanolic extract, High-resolution mass spectroscopy-LCMS was used. In vitro cytotoxicity study against MCF-7 and MDA-MB-231 cell line and IC 50 value was found to be 37.5µg/ml. From histopathological studies, no toxicity in liver and kidney tissue was identified. Conclusion: This plant tuber can be used as a regular diet to reduce the chance of breast cancer. Further, more studies should be conducted to isolate and identify the responsible compound.

Keywords: human breast adenocarcinoma, ROS, mitochondrial transmembrane, apoptosis

Procedia PDF Downloads 106
2844 Protein Stabilized Foam Structures as Protective Carrier Systems during Microwave Drying of Probiotics

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Due to the increasing popularity of healthy products, probiotics are still of rising importance in food manufacturing. With the aim to amplify the field of probiotic application to non-chilled products, the cultures have to be preserved by drying. Microwave drying has proved to be a suitable technique to achieve relatively high survival rates, resulting from drying at gentle temperatures, among others. However, diffusion limitation due to compaction of cell suspension during drying can prolong drying times as well as deteriorate product properties (grindability, rehydration performance). Therefore, we aimed to embed probiotics in an aerated matrix of whey proteins (surfactants) and di-/polysaccharides (foam stabilization, probiotic protection) during drying. As a result of the manifold increased inner surface of the cell suspension, drying performance was enhanced significantly as compared to non-foamed suspensions. This work comprises investigations on suitable foam matrices, being stable under vacuum (variation of protein concentration, type and concentration of di-/polysaccharide) as well as development of an applicable microwave drying process in terms of microwave power, chamber pressure and maximum product temperatures. Performed analyses included foam characteristics (overrun, drainage, firmness, bubble sizes), and properties of the dried cultures (survival, activity). In addition, efficiency of the drying process was evaluated.

Keywords: foam structure, microwave drying, polysaccharides, probiotics

Procedia PDF Downloads 251
2843 Blockchain Technology Security Evaluation: Voting System Based on Blockchain

Authors: Omid Amini

Abstract:

Nowadays, technology plays the most important role in the life of human beings because people use technology to share data and to communicate with each other, but the challenge is the security of this data. For instance, as more people turn to technology in the world, more data is generated, and more hackers try to steal or infiltrate data. In addition, the data is under the control of the central authority, which can trigger the challenge of losing information and changing information; this can create widespread anxiety for different people in different communities. In this paper, we sought to investigate Blockchain technology that can guarantee information security and eliminate the challenge of central authority access to information. Now a day, people are suffering from the current voting system. This means that the lack of transparency in the voting system is a big problem for society and the government in most countries, but blockchain technology can be the best alternative to the previous voting system methods because it removes the most important challenge for voting. According to the results, this research can be a good start to getting acquainted with this new technology, especially on the security part and familiarity with how to use a voting system based on blockchain in the world. At the end of this research, it is concluded that the use of blockchain technology can solve the major security problem and lead to a secure and transparent election.

Keywords: blockchain, technology, security, information, voting system, transparency

Procedia PDF Downloads 116