Search results for: legal artificial intelligence
1844 Sukuk Issuance and Its Regulatory Framework in Saudi Arabia
Authors: Ali Alshamrani
Abstract:
This article aims to give a comprehensive and critical review of sukuk issuance in Saudi Arabia, and the extent to which the issuance of sukuk in Saudi Arabia is consistent with Shariah requirements. The article is divided into two sections. Accordingly, the first section of this article begins with an examination of sukuk in general, and includes the concept of sukuk, the basic principles of sukuk, common types of sukuk, and a critical analysis of the most important differences between sukuk and conventional bonds. The second section gives a critical analysis of how sukuk work in Saudi Arabia, offering the regulatory framework of the issuance of sukuk in the KSA, and the legal challenges from Shariah point of view, and provide recommendations to overcome these challenges.Keywords: sukuk issuance, Shariah, Saudi Arabia, capital market authority
Procedia PDF Downloads 4731843 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning
Authors: Thomas James Bell III
Abstract:
Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education
Procedia PDF Downloads 1461842 Investigating the Abolishment of Virginity Testing in South Africa
Authors: Nqobizwe Mvelo Ngema
Abstract:
This paper argues that the custom of virginity testing has been revived in order to combat against social ills such as unwanted pregnancies, immorality, promiscuity and the spread of HIV/AIDS. However, virginity testing is not free from challenges such as the belief that having sexual intercourse with a virgin can cure men from AIDS, virginity testing is not accurate because there is scientific evidence supporting the fact that there many ways of losing virginity other than sexual intercourse, for example, the usage of tampons and participation in physical activities may tear the hymen. South African parliament took some positive steps in combatting against harm associated with virginity testing by regulating it in the Children’s Act. It is argued, in this paper, that the abolition of virginity testing may lead to paper law and it would be premature to abolish virginity testing in South Africa.Keywords: equality rights, virginity testing, human rights, interdisciplinary law and legal studies
Procedia PDF Downloads 5271841 Using MALDI-TOF MS to Detect Environmental Microplastics (Polyethylene, Polyethylene Terephthalate, and Polystyrene) within a Simulated Tissue Sample
Authors: Kara J. Coffman-Rea, Karen E. Samonds
Abstract:
Microplastic pollution is an urgent global threat to our planet and human health. Microplastic particles have been detected within our food, water, and atmosphere, and found within the human stool, placenta, and lung tissue. However, most spectrometric microplastic detection methods require chemical digestion which can alter or destroy microplastic particles and makes it impossible to acquire information about their in-situ distribution. MALDI TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) is an analytical method using a soft ionization technique that can be used for polymer analysis. This method provides a valuable opportunity to both acquire information regarding the in-situ distribution of microplastics and also minimizes the destructive element of chemical digestion. In addition, MALDI TOF MS allows for expanded analysis of the microplastics including detection of specific additives that may be present within them. MALDI TOF MS is particularly sensitive to sample preparation and has not yet been used to analyze environmental microplastics within their specific location (e.g., biological tissues, sediment, water). In this study, microplastics were created using polyethylene gloves, polystyrene micro-foam, and polyethylene terephthalate cable sleeving. Plastics were frozen using liquid nitrogen and ground to obtain small fragments. An artificial tissue was created using a cellulose sponge as scaffolding coated with a MaxGel Extracellular Matrix to simulate human lung tissue. Optimal preparation techniques (e.g., matrix, cationization reagent, solvent, mixing ratio, laser intensity) were first established for each specific polymer type. The artificial tissue sample was subsequently spiked with microplastics, and specific polymers were detected using MALDI-TOF-MS. This study presents a novel method for the detection of environmental polyethylene, polyethylene terephthalate, and polystyrene microplastics within a complex sample. Results of this study provide an effective method that can be used in future microplastics research and can aid in determining the potential threats to environmental and human health that they pose.Keywords: environmental plastic pollution, MALDI-TOF MS, microplastics, polymer identification
Procedia PDF Downloads 2601840 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance
Authors: Yi Jen Wang, Yu Ju Chen
Abstract:
Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing
Procedia PDF Downloads 1771839 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050
Authors: Farzaneh Sasanpour, Saeed Amini Varaki
Abstract:
Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran
Procedia PDF Downloads 691838 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network
Procedia PDF Downloads 2261837 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 1091836 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.Keywords: big data, next generation networks, network transformation, strategy
Procedia PDF Downloads 3611835 Models of Copyrights System
Authors: A. G. Matveev
Abstract:
The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.Keywords: copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model
Procedia PDF Downloads 4201834 Investigating the Relationship between Bank and Cloud Provider
Authors: Hatim Elhag
Abstract:
Banking and Financial Service Institutions are possibly the most advanced in terms of technology adoption and use it as a key differentiator. With high levels of business process automation, maturity in the functional portfolio, straight through processing and proven technology outsourcing benefits, Banking sector stand to benefit significantly from Cloud computing capabilities. Additionally, with complex Compliance and Regulatory policies, combined with expansive products and geography coverage, the business impact is even greater. While the benefits are exponential, there are also significant challenges in adopting this model– including Legal, Security, Performance, Reliability, Transformation complexity, Operating control and Governance and most importantly proof for the promised cost benefits. However, new architecture designed should be implemented to align this approach.Keywords: security, cloud, banking sector, cloud computing
Procedia PDF Downloads 5111833 Ethnic and National Determinants in the Process of Building Peace in Afghanistan After the Withdrawal of Western Forces in 2021
Authors: Małgorzata Cichy
Abstract:
Afghanistan is a source of conflicts that affect security on a global scale. The role of ethnic and national determinants in the peacebuilding process in this country remains an extremely important factor in this respect. Research methods include literature and data analysis (scientific literature, documents of governmental and non-governmental organizations, statistical data and media reports), institutional and legal analysis, as well as decision-making method. The main objective of the research is a comprehensive answer to the question of how ethnic and national factors affect the process of building peace in Afghanistan after 2021 and what impact it has on international security.Keywords: Afghanistan, pashtuns, peace, taliban
Procedia PDF Downloads 971832 Computer Fraud from the Perspective of Iran's Law and International Documents
Authors: Babak Pourghahramani
Abstract:
One of the modern crimes against property and ownership in the cyber-space is the computer fraud. Despite being modern, the aforementioned crime has its roots in the principles of religious jurisprudence. In some cases, this crime is compatible with the traditional regulations and that is when the computer is considered as a crime commitment device and also some computer frauds that take place in the context of electronic exchanges are considered as crime based on the E-commerce Law (approved in 2003) but the aforementioned regulations are flawed and until recent years there was no comprehensive law in this regard; yet after some years the Computer Crime Act was approved in 2009/26/5 and partly solved the problem of legal vacuum. The present study intends to investigate the computer fraud according to Iran's Computer Crime Act and by taking into consideration the international documents.Keywords: fraud, cyber fraud, computer fraud, classic fraud, computer crime
Procedia PDF Downloads 3321831 Ending the Multibillionaire: A Solution to Poverty and Violations of the Right to Health
Authors: Andreanna Kalasountas
Abstract:
A rampant health crisis is facing America. That health crisis is poverty. Millions of Americans live without knowing when they will eat or where they will sleep. Meanwhile, there are over 600 multi-billionaires in the United States. “In April 2021, U.S. billionaires had nearly twice as much combined wealth than the bottom half of Americans -- $4.56 trillion vs. $2.62 trillion.” It's disturbingly ironic that we live in a country where there are people with more money than they know what to do with (or could spend in a lifetime) while simultaneously, people are losing their life because they do not have enough money to survive. Accordingly, this paper argues for the end of the multi-billionaire; that wealth be capped, captured, and redistributed to the poorest among us. To accomplish this goal, this paper begins by identifying the problem, advocating for a new measurement of poverty; and concludes with a both legal and tax policy solutions and what implementation of those solutions would look like.Keywords: health and human rights, law and policy, poverty, wealth gap
Procedia PDF Downloads 1031830 Meitu and the Case of the AI Art Movement
Authors: Taliah Foudah, Sana Masri, Jana Al Ghamdi, Rimaz Alzaaqi
Abstract:
This research project explores the creative works of the app Metui, which allows consumers to edit their photos and use the new and popular AI feature, which turns any photo into a cartoon-like animated image with beautified enhancements. Studying this AI app demonstrates the significance of the ability in which AI can develop intricate designs which verily replicate the human mind. Our goal was to investigate the Metui app by asking our audience certain questions about its functionality and their personal feelings about its credibility as well as their beliefs as to how this app will add to the future of the AI generation, both positively and negatively. Their responses were further explored by analyzing the questions and responses thoroughly and calculating the results through pie charts. Overall, it was concluded that the Metui app is a powerful step forward for AI by replicating the intelligence of humans and its creativity to either benefit society or do the opposite.Keywords: AI Art, Meitu, application, photo editing
Procedia PDF Downloads 711829 The Consequences of Complaint Offenses against Copyright Protection
Authors: Chryssantus Kastowo, Theresia Anita Christiani, Anny Retnowati
Abstract:
Copyright infringement as a form of infringement does not always mean causing harm to the creator. This can be proven with so many copyright violations in society and there is no significant law enforcement effort when compared with the violations that occurred. Copyright law as a form of appreciation from the state to the creator becomes counter productive if there is omission of violations. The problem raised in this article is how is the model of copyright regulation in accordance with the purpose of the law of copyright protection. This article is based on normative legal research focusing on secondary data. The analysis used is a conceptual approach. The analysis shows that the regulation of copyright emphasizes as a subjective right that is wholly within the author's power. This perspective will affect the claim of rights by the creator or allow violations. The creator is obliged to maintain the overall performance of copyright protection, especially in the event of a violation.Keywords: copyright, enforcement, law, violation
Procedia PDF Downloads 1361828 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1951827 The Right to Data Portability and Its Influence on the Development of Digital Services
Authors: Roman Bieda
Abstract:
The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.Keywords: data portability, digital market, GDPR, personal data
Procedia PDF Downloads 4771826 A Study of Farming Earthworms Commercial with Organic Waste
Authors: Phrutsaya Piyanusorn
Abstract:
This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management.Keywords: farmin earthworms, commercial, organic waste, marketing management
Procedia PDF Downloads 3311825 Mobile Smart Application Proposal for Predicting Calories in Food
Authors: Marcos Valdez Alexander Junior, Igor Aguilar-Alonso
Abstract:
Malnutrition is the root of different diseases that universally affect everyone, diseases such as obesity and malnutrition. The objective of this research is to predict the calories of the food to be eaten, developing a smart mobile application to show the user if a meal is balanced. Due to the large percentage of obesity and malnutrition in Peru, the present work is carried out. The development of the intelligent application is proposed with a three-layer architecture, and for the prediction of the nutritional value of the food, the use of pre-trained models based on convolutional neural networks is proposed.Keywords: volume estimation, calorie estimation, artificial vision, food nutrition
Procedia PDF Downloads 1021824 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 2771823 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 2481822 Investigating the Impact of Knowledge Management Components on Employee Productivity
Authors: Javad Moghtader Kargaran
Abstract:
Today, attention to knowledge and management Knowledge as a strategy is very important has taken with economy becoming knowledge-oriented, how and knowing the effective management and integration of different types Knowledge (obvious-implicit) to preserve and create advantage. Competition has become very important. Knowledge is a valuable resource for empowering organizations in the direction of innovation and competition. Due to the importance of human resources in the survival of organizations, extensive efforts are made to empower them. This knowledge can lead to awareness among employees. Employees and the knowledge that is in their minds are very valuable resources for the organization, which must be managed and developed. In fact, the ultimate goal of knowledge management is to increase the intelligence and productivity of employees and the organization.Keywords: knowledge, management, productivity, human
Procedia PDF Downloads 971821 Ceratocystis manginecans Causal Agent of a Destructive Mangoes in Pakistan
Authors: Asma Rashid, Shazia Iram, Iftikhar Ahmad
Abstract:
Mango sudden death is an emerging problem in Pakistan. As its prevalence is observed in almost all mango growing areas and severity varied from 2-5% in Punjab and 5-10% in Sindh. Symptoms on affected trees include bark splitting, discoloration of the vascular tissue, wilting, gummosis and at the end rapid death. Total of n= 45 isolates were isolated from different mango growing areas of Punjab and Sindh. Pathogenicity of these fungal isolates was tested through artificial inoculation method on different hosts (potato tubers, detached mango leaves, detached mango twigs and mango plants) under controlled conditions and all were proved pathogenic with varying degree of aggressiveness in reference to control. The findings of the present study proved that out of these four methods, potato tubers inoculation method was the most ideal as this fix the inoculums on the target site. Increased fungal growth and spore numbers may be due to soft tissues of potato tubers from which Ceratocystis isolates can easily pass. Lesion area on potato tubers was in the range of 7.09-0.14 cm2 followed by detached mango twigs which were ranged from 0.48-0.09 cm2). All pathological results were proved highly significant at P<0.05 through ANOVA but isolate to isolate showed non-significant behaviour but they have the positive effect on lesion area. Re-isolation of respective fungi was achieved with 100 percent success which results in the verification of Koch’s postulates. DNA of fungal pathogens was successfully extracted through phenol chloroform method. Amplification was done through ITS, b-tubulin gene, and Transcription Elongation Factor (EF1-a) gene primers and the amplified amplicons were sequenced and compared from NCBI which showed 99-100 % similarity with Ceratocystis manginecans. Fungus Ceratocystis manginecans formed one of strongly supported sub-clades through phylogenetic tree. Results obtained through this work would be supportive in establishment of relation of isolates with their region and will give information about pathogenicity level of isolates that would be useful to develop the management policies to reduce the afflictions in orchards caused by mango sudden death.Keywords: artificial inoculation, mango, Ceratocystis manginecans, phylogenetic, screening
Procedia PDF Downloads 2491820 Transcriptional Response of Honey Bee to Differential Nutritional Status and Nosema Infection
Authors: Farida Azzouz-Olden, Arthur G. Hunt, Gloria Degrandi-Hoffman
Abstract:
Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice; however, commercial substitutes, such as BeePro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Gene ontology enrichment revealed that, compared with poor diet (carbohydrates (C)), bees fed pollen (P > C), BeePro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or BeePro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to BeePro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than BeePro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.Keywords: honeybee, immunity, Nosema, nutrition, RNA-seq
Procedia PDF Downloads 1571819 In Vitro Evaluation of an Artificial Venous Valve
Authors: Joon Hock Yeo, Munirah Ismail
Abstract:
Chronic venous insufficiency is a condition where the venous wall or venous valves fail to operate properly. As such, it is difficult for the blood to return from the lower extremities back to the heart. Chronic venous insufficiency affects many people worldwide. In last decade, there have been many new and innovative designs of prosthetic venous valves to replace the malfunction native venous valves. However, thus far, to the authors’ knowledge, there is no successful prosthetic venous valve. In this project, we have developed a venous valve which could operate under low pressure. While further testing is warranted, this unique valve could potentially alleviate problems associated with chronic venous insufficiency.Keywords: prosthetic venous valve, bi-leaflet valve, chronic venous insufficiency, valve hemodynamics
Procedia PDF Downloads 1981818 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China
Procedia PDF Downloads 4941817 The Effects of Circadian Rhythms Change in High Latitudes
Authors: Ekaterina Zvorykina
Abstract:
Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors
Procedia PDF Downloads 1601816 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 751815 Classical Music Unplugged: The Future of Classical Music Performance: Tradition, Technology, and Audience Engagement
Authors: Orit Wolf
Abstract:
Classical music performance is undergoing a profound transformation, marked by a confluence of technological advancements and evolving cultural dynamics. This academic paper explores the multifaceted changes and challenges faced by classical music performance, considering the impact of artificial intelligence (AI) along with other vital factors shaping this evolution. In the contemporary era, classical music is experiencing shifts in performance practices. This paper delves into these changes, emphasizing the need for adaptability within the classical music world. From repertoire selection and concert formats to artistic expression, performers and institutions navigate a delicate balance between tradition and innovation. We explore how these changes impact the authenticity and vitality of classical music performances. Furthermore, the influence of AI in the classical music concert world cannot be underestimated. AI technologies are making inroads into various aspects, from composition assistance to rehearsal and live performances. This paper examines the transformative effects of AI, considering how it enhances precision, adaptability, and creative exploration for musicians. We explore the implications for composers, performers, and the overall concert experience while addressing ethical concerns and creative opportunities. In addition to AI, there is the importance of cross-genre interactions within the classical music sphere. Mash-ups and collaborations with artists from diverse musical backgrounds are redefining the boundaries of classical music and creating works that resonate with a wider and more diverse audience. The benefits of cross-pollination in classical music seem crucial, offering a fresh perspective to listeners. As an active concert artist, Orit Wolf will share how the expectations of classical music audiences are evolving. Modern concertgoers seek not only exceptional musical performances but also immersive experiences that may involve technology, multimedia, and interactive elements. This paper examines how classical musicians and institutions are adapting to these changing expectations, using technology and innovative concert formats to deliver a unique and enriched experience to their audiences. As these changes and challenges reshape the classical music world, the need for a harmonious coexistence of tradition, technology, and innovation becomes evident. Musicians, composers, and institutions are striving to find a balance that ensures classical music remains relevant in a rapidly changing cultural landscape while maintaining the value it brings to compositions and audiences. This paper, therefore, aims to explore the evolving trends in classical music performance. It considers the influence of AI as one element within the broader context of change, highlighting the necessity of adaptability, cross-genre interactions, and a response to evolving audience expectations. By doing so, the classical music world can navigate this transformative period while preserving its timeless traditions and adding value to both performers and listeners. Orit Wolf, an international concert pianist, fulfils her vision to bring this music in new ways to mass audiences and will share her personal and professional experience as an artist who goes on stage and makes disruptive concerts.Keywords: cross culture collaboration, music performance and ai, classical music in the digital age, classical concerts, innovation and technology, performance innovation, audience engagement in classical concerts
Procedia PDF Downloads 72