Search results for: data quality filtering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31918

Search results for: data quality filtering

29578 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 439
29577 Evaluation of Polyurethane-Bonded Particleboard Manufactured with Eucalyptus Sp. and Bi-Oriented Polypropylene Wastes

Authors: Laurenn Borges de Macedo, Fabiane Salles Ferro, Tiago Hendrigo de Almeida, Gérson Moreira de Lima, André Luiz Christoforo, Francisco Antonio Rocco Lahr

Abstract:

The growth of the furniture manufacturing industry is one of the fundamental factors contributing to the growth of the particleboard industry. The use of recycled products into particleboards can contribute to the forest conservation, in addition to achieve a high quality sustainable product with low-cost production. This work investigates the effect of bi-oriented polypropylene (BOPP) waste particles and sealing product on the physical and mechanical properties of Eucalyptus sp. particleboards fabricated with a castor oil based polyurethane resin. Among the factors, only the seal coating was statistically significant. The wood panels of Treatment 2 were classified as H1, based on the internal bond strength and elastic modulus results data required by ANSI A208.1:1999. The bending strength data did not reach the minimum values recommended by NBR 14810:2006 and ANSI A208.1:1999. The thickness swelling data for 2h immersed in water achieved the standard requirement levels. High-density panels were achieved revealing their potential use in variety of particleboard applications.

Keywords: BOPP, mechanical properties, particleboards, physical properties

Procedia PDF Downloads 376
29576 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.

Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling

Procedia PDF Downloads 321
29575 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 99
29574 The Protection and Enhancement of the Roman Roads in Algeria

Authors: Tarek Ninouh, Ahmed Rouili

Abstract:

The Roman paths or roads offer a very interesting archaeological material, because they allow us to understand the history of human settlement and are also factors that increase territorial identity. Roman roads are one of the hallmarks of the Roman empire, which extends to North Africa. The objective of this investigation is to attract the attention of researchers to the importance of Roman roads and paths, which are found in Algeria, according to the quality of the materials and techniques used in this period of our history, and to encourage other decision makers to protect and enhance these routes because the current urbanization, intensive agricultural practices, or simply forgotten, decreases the sustainability of this important historical heritage.

Keywords: Roman paths, quality of materials, property, valuation

Procedia PDF Downloads 432
29573 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 352
29572 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 165
29571 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

Keywords: membrane bioreactor, SRT, HRT, fouling

Procedia PDF Downloads 530
29570 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 598
29569 Effect of Air Temperatures (°C) and Slice Thickness (mm) on Drying Characteristics and Some Quality Properties of Omani Banana

Authors: Atheer Al-Maqbali, Mohammed Al-Rizeiqi, Pankaj Pathare

Abstract:

There is an ever-increased demand for the consumption of banana products in Oman and elsewhere in the region due to the nutritional value and the decent taste of the product. There are approximately 3,751 acres of land designated for banana cultivation in the Sultanate of Oman, which produces approximately 18,447 tons of banana product. The fresh banana product is extremely perishable, resulting in a significant post-harvest economic loss. Since the product has high sensory acceptability, the drying method is a common method for processing fresh banana products. This study aims to use the drying technology in the production of dried bananas to preserve the largest amount of natural color and delicious taste for the consumer. The study also aimed to assess the shelf stability of both water activity (aw) and color (L*, a*, b*) for fresh and finished dried bananas by using a Conventional Air Drying System. Water activity aw, color characteristic L a b, and product’s hardness were analyzed for 3mm, 5mm, and7 mm thickness at different temperaturesoC. All data were analyzed statistically using STATA 13.0, and α ≤ 0.05 was considered for the significance level. The study is useful to banana farmers to improve cultivation, food processors to optimize producer’s output and policy makers in the optimization of banana processing and post-harvest management of the products.

Keywords: banana, drying, oman, quality, thickness, hardness, color

Procedia PDF Downloads 96
29568 Increasing the Speed of the Apriori Algorithm by Dimension Reduction

Authors: A. Abyar, R. Khavarzadeh

Abstract:

The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.

Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis

Procedia PDF Downloads 13
29567 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study

Authors: Mohamed H. Khalil

Abstract:

Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.

Keywords: GIS Web-Based, base-map, water network, decision support system

Procedia PDF Downloads 100
29566 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 359
29565 Course Outcomes to Programme Outcomes Mapping: A Methodology Based on Key Elements

Authors: Twarakavi Venkata Suresh Kumar, Sailaja Kumar, B. Eswara Reddy

Abstract:

In a world of tremendous technical developments, effective and efficient higher education has always been a major challenge. The rising number of educational institutions have made it mandatory for healthy competitions among the institutions. To evaluate the qualitative competence of these educations institutions in engineering and technology and related disciplines, an efficient assessment technique in internal and external quality has to be followed. To achieve this, the curriculum is to be developed into courses, and each course has to be presented in the form teaching lesson plan consisting of topics and session outcome known as Course Outcomes (COs), that easily map into different Programme Outcomes (POs). The major objective of these methodologies is to provide quality technical education to its students. Detailed clear weightage in CO-PO mapping helps in proper measurable COs and to devise the POs attainment is an important issue. This ensures in assisting the achievement of the POs with proper weightage to POs, and also improves the successive curriculum development. In this paper, we presented a methodology for mapping CO and PO considering the key elements supported by each PO. This approach is useful in evaluating the attainment of POs which is based on the attainment of COs using the existing data from students' marks taken from various test items. Such direct assessment tools are used to measure the degree to which each student has achieved each course learning outcome by the completion of the course. Hence, these results are also useful in measuring the PO attainment for improving the programme vision and mission.

Keywords: attainment, course outcomes, programme outcomes, educational institutions

Procedia PDF Downloads 474
29564 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 69
29563 From Madrassah to Elite Schools; The Political Economy of Pluralistic Educational Systems in Pakistan

Authors: Ahmad Zia

Abstract:

This study problematizes the notion that the pluralistic educational system in Pakistan fosters equality. Instead, it argues that this system not only reflects but also sustains existing class divisions, with implications for the future economic and social mobility of children. The primary goal of this study is to explore unequal access to educational opportunities in Pakistan. By examining the intersection between education and socioeconomic status, it attempts to explore the implications of key disparities in different tiers of education systems in Pakistan like between madrassahs, public schools and private schools, with an emphasis on how these institutions contribute to the maintenance of class hierarchies. This is a primary data based case study and the most recent data has been directly gathered Qualitative methods have been used to collect data from the units of data collection (UDCs). it have used Bourdieu’s theory as a leading framework. Its application in the context of country like Pakistan is very productive. it choose the thematic analysis method to analyse the data. This process helped me to identify relevant main themes and subthemes emerging from my data, which could comprise my analysis. Findings reveal that the educational landscape in Pakistan is deeply divided having far-reaching implications for social mobility and access to opportunities. This study found profound disparities among various educational institutions with respect to widening socioeconomic divides. Every kind of educational institution operates in a distinct socio-cultural and economic environment. Therefore, access to quality education is highly stratified and remains a privilege for only those who can afford it. This widens the socioeconomic gap that already exists. There has not been an extensive investigation of the relationship between pluralistic educations with class stratification in the literature so far. This study adds to a multifaceted understanding of educational disparities in Pakistan by analysing the intersections between socioeconomic divisions and educational access. It offers valuable theoretical and practical insights into the subject. This study provides theoretical concepts and empirical data to enhance scholars' understanding of socioeconomic inequality, specifically in relation to education systems.

Keywords: social inequality, pluralism, class divide, capitalism, globalisation, elitism, education

Procedia PDF Downloads 22
29562 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 196
29561 Factors Affecting Customer Loyalty in the Independent Surveyor Service Industry in Indonesia

Authors: Sufrin Hannan, Budi Suharjo, Rita Nurmalina, Kirbrandoko

Abstract:

The challenge for independent surveyor service companies now is growing with increasing uncertainty in business. Protection from the government for domestic independent surveyor industry from competitor attack, such as entering the global surveyors to Indonesia also no longer exists. Therefore, building customer loyalty becomes very important to create a long-term relationship between an independent surveyor with its customers. This study aims to develop a model that can be used to build customer loyalty by looking at various factors that determine customer loyalty, especially on independent surveyors for coal inspection in Indonesia. The development of this model uses the relationship marketing approach. Testing of the hypothesis is done by testing the variables that determine customer loyalty, either directly or indirectly, which amounted to 10 variables. The data were collected from 200 questionnaires filled by independent surveyor company decision makers from 51 exporting companies and coal trading companies in Indonesia and analyzed using Structural Equation Model (SEM). The results show that customer loyalty of independent surveyors is influenced by customer satisfaction, trust, switching-barrier, and relationship-bond. Research on customer satisfaction shows that customer satisfaction is influenced by the perceived quality and perceived value, while perceived quality is influenced by reliability, assurance, responsiveness, and empathy.

Keywords: relationship marketing, customer loyalty, customer satisfaction, switching barriers, relationship bonds

Procedia PDF Downloads 172
29560 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling

Authors: Jehad Al Dallal

Abstract:

Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures have not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.

Keywords: object-oriented class, software quality, class cohesion measure, class coupling measure

Procedia PDF Downloads 326
29559 Students' Perceptions of Assessment and Feedback in Higher Education

Authors: Jonathan Glazzard

Abstract:

National student satisfaction data in England demonstrate that undergraduate students are less satisfied overall with assessment and feedback than other aspects of their higher education courses. Given that research findings suggest that high-quality feedback is a critical factor associated with academic achievement, it is important that feedback enables students to demonstrate improved academic achievement in their subsequent assessments. Given the growing importance of staff-student partnerships in higher education, this research examined students’ perceptions of assessment and feedback in one UK university. Students’ perceptions were elicited through the use of a university-wide survey which was completed by undergraduate students. In addition, three focus groups were used to provide qualitative student perception data across the three university Facilities. The data indicate that whilst students valued detailed feedback on their work, less detailed feedback could be compensated for by the development of pre-assessment literacy skills which are front-loaded into courses. Assessment literacy skills valued by students included the use of clear assessment criteria and assignment briefings which enabled students to fully understand the assessment task. Additionally, students valued assessment literacy pre-assessment tasks which enabled them to understand the standards which they were expected to achieve. Students valued opportunities for self and peer assessment prior to the final assessment and formative assessment feedback which matched the summative assessment feedback. Students also valued dialogic face-to-face feedback after receiving written feedback Above all, students valued feedback which was particular to their work and which gave recognition for the effort they had put into completing specific assessments. The data indicate that there is a need for higher education lecturers to receive systematic training in assessment and feedback which provides a comprehensive grounding in pre-assessment literacy skills.

Keywords: formative assessment, summative assessment, feedback, marking

Procedia PDF Downloads 325
29558 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities

Authors: Claire Biasco, Thaier Hayajneh

Abstract:

A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.

Keywords: blockchain, IoT, smart city, DAO

Procedia PDF Downloads 128
29557 A Comparative Study of the Effectiveness of Narrative Therapy in Individual and Group Counseling on Promoting Hope in With Breast Cancer’s Women

Authors: Sajadian Akram, Tavasoli F.

Abstract:

Breast cancer is the second most common cancer in the world and certainly the most frequent cancer mostly among women. This study was aimed to compare the effectiveness of individual counseling and group narrative therapy on female patients' life expectancy afflicted by breast cancer. The present study is a pre-test-post-test clinical trial. Fifty-five patients with breast cancer were randomly selected in the follow-up period and after their active medical treatment completion. Then, they were randomly divided into two groups: individual counseling and group counseling. Herth hope index (HHI) was used to measure the patients' hope level. Data were analyzed using t-test and SPSS software. hope rate was statistically significant in both groups receiving individual and group narrative therapy in the post-test compared to the pre-test (P <00000). Moreover, the comparative evaluation of hope in both groups (individual & group counseling) in the post-test showed that group narrative counseling is more effective than individual narrative counseling (P <00000). Conclusion: Narrative therapy promotes hope in breast cancer patients effectively. Due to the nature of breast cancer and its psychological effects in the post-treatment period, providing narrative group therapy can improve life quality. Patients' life quality changes in tandem with changes in hope.

Keywords: hope, narrative therapy, counseling, breast cancer

Procedia PDF Downloads 129
29556 Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter

Authors: Yousfi Abdelkader, Chaker Abdelkader, Bot Youcef

Abstract:

This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage.

Keywords: power quality, shunt active power filter, interval type-2 fuzzy logic controller (T2FL), multilevel inverter

Procedia PDF Downloads 186
29555 Restoration of Railway Turnout Frog with FCAW

Authors: D. Sergejevs, A. Tipainis, P. Gavrilovs

Abstract:

Railway turnout frogs restored with MMA often have such defects as infusions, pores, a.o., which under the influence of dynamic forces cause premature destruction of the restored surfaces. To prolong the operational time of turnout frog, i.e. operational time of the restored surface, turnout frog was restored using FCAW and afterwards matallographic examination was performed. Experimental study revealed that railway turnout frog restored with FCAW had better quality than elements restored with MMA, furthermore it provided considerable time economy.

Keywords: elements of railway turnout, FCAW, metallographic examination, quality of build-up welding

Procedia PDF Downloads 647
29554 Evaluation of the Quality of Education Offered to Students with Special Needs in Public Schools in the City of Bauru, Brazil

Authors: V. L. M. F. Capellini, A. P. P. M. Maturana, N. C. M. Brondino, M. B. C. L. B. M. Peixoto, A. J. Broughton

Abstract:

A paradigm shift is a process. The process of implementing inclusive education, a system constructed to support all learners, requires planning, identification, experimentation, and evaluation. In this vein, the purpose of the present study was to evaluate the capacity of one Brazilian state school systems to provide special education students with a quality inclusive education. This study originated at the behest of concerned families of students with special needs who filed complaints with the Municipality of Bauru, São Paulo. These families claimed, 1) children with learning differences and educational needs had not been identified for services, and 2) those who had been identified had not received sufficient specialized educational assistance (SEA) in schools across the City of Bauru. Hence, the Office of Civil Rights for the state of São Paulo (Ministério Público de São Paulo) summoned the local higher education institution, UNESP, to design a research study to investigate these allegations. In this exploratory study, descriptive data were gathered from all elementary and middle schools including 58 state schools and 17 city schools, for a total of 75 schools overall. Data collection consisted of each school's annual strategic action plan, surveys and interviews with all school stakeholders to determine their perceptions of the inclusive education available to students with Special Education Needs (SEN). The data were collected as one of four stages in a larger study which also included field observations of a focal students' experience and a continuing education course for all teachers and administrators in both state and city schools. For the purposes of this study, the researchers were interested in understanding the perceptions of school staff, parents, and students across all schools. Therefore, documents and surveys from 75 schools were analyzed for adherence to federal legislation guaranteeing students with SEN the right to special education assistance within the regular school setting. Results shows that while some schools recognized the legal rights of SEN students to receive special education, the plans to actually deliver services were absent. In conclusion, the results of this study revealed both school staff and families have insufficient planning and accessibility resources, and the schools have inadequate infrastructure for full-time support to SEN students, i.e., structures and systems to support the identification of SEN and delivery of services within schools of Bauru, SP. Having identified the areas of need, the city is now prepared to take next steps in the process toward preparing all schools to be inclusive.

Keywords: inclusion, school, special education, special needs

Procedia PDF Downloads 163
29553 Post-occupancy Evaluation of Greenway Based on Multi-source data : A Case Study of Jincheng Greenway in Chengdu

Authors: Qin Zhu

Abstract:

Under the development concept of Park City, Tianfu Greenway system, as the basic and pre-configuration element of Chengdu Global Park construction, connects urban open space with linear and circular structures and undertakes and exerts the ecological, cultural and recreational functions of the park system. Chengdu greenway construction is in full swing. In the process of greenway planning and construction, the landscape effect of greenway on urban quality improvement is more valued, and the long-term impact of crowd experience on the sustainable development of greenway is often ignored. Therefore, it is very important to test the effectiveness of greenway construction from the perspective of users. Taking Jincheng Greenway in Chengdu as an example, this paper attempts to introduce multi-source data to construct a post-occupancy evaluation model of greenway and adopts behavior mapping method, questionnaire survey method, web text analysis and IPA analysis method to comprehensively evaluate the user 's behavior characteristics and satisfaction. According to the evaluation results, we can grasp the actual behavior rules and comprehensive needs of users so that the experience of building greenways can be fed back in time and provide guidance for the optimization and improvement of built greenways and the planning and construction of future greenways.

Keywords: multi-source data, greenway, IPA analysis, post -occupancy evaluation (POE)

Procedia PDF Downloads 63
29552 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 253
29551 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 159
29550 Land Use Change Detection Using Remote Sensing and GIS

Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi

Abstract:

In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.

Keywords: Haraz basin, change detection, land-use, satellite data

Procedia PDF Downloads 417
29549 The Influence of the Aquatic Environment on Hematological Parameters in Cyprinus carpio

Authors: Andreea D. Șerban, Răzvan Mălăncuș, Mihaela Ivancia, Șteofil Creangă

Abstract:

Just as air influences the quality of life in the terrestrial environment, water, as a living environment, is one of great importance when it comes to the quality of life of underwater animals, which acquires an even higher degree of importance when analyzing underwater creatures as future products for human consumption. Thus, going beyond the ideal environment, in which all water quality parameters are permanently in perfect standards for reproduction, growth, and development of fish material and customizing this study to reality, it was demonstrated the importance of reproduction, development, and growth of biological material, necessary in the population fish farms, in the same environment to gain the maximum yield that a fish farm can offer. The biological material used was harvested from 3 fish farms located at great distances from each other to have environments with different parameters. The specimens were clinically healthy at 2 years of age. Thus, the differences in water quality parameters had effects on specimens from other environments, describing large curves in their evolution in new environments. Another change was observed in the new environment, the specimens contributing with the "genetic package" to its modification, tending to a balance of the parameters studied to the values in the environment in which they lived until the time of the experiment. The study clearly showed that adaptability to the environment in which an individual has developed and grown is not valid in environments with different parameters, resulting even in the fatality of one sample during the experiment. In some specimens, the values of the studied hematological parameters were halved after the transfer to the new environment, and in others, the same parameters were doubled. The study concludes that the specimens were adapted to the environment in which they developed and grew, their descendants having a higher value of heritability only in the initial environment. It is known that heritability is influenced 50% by the genetic package of the individual and 50% by the environment, by removing the value of the environment, the duration of improvement of characters of interest will be shorter and the maximum yield of fish farms can be achieved in a smaller period.

Keywords: environment, heritability, quality, water

Procedia PDF Downloads 175