Search results for: combined therapy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4559

Search results for: combined therapy

2219 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History

Authors: Rama Debbarma, Debanjan Das

Abstract:

The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.

Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, Time history.

Procedia PDF Downloads 273
2218 Secure Message Transmission Using Meaningful Shares

Authors: Ajish Sreedharan

Abstract:

Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.

Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image

Procedia PDF Downloads 461
2217 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis

Authors: Adrian-Gabriel Chifu, Sebastien Fournier

Abstract:

One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.

Keywords: sentiment analysis, difficulty, classification, machine learning

Procedia PDF Downloads 95
2216 Combination of Lamotrigine and Duloxetine: A Potential Approach for the Treatment of Acute Bipolar Depression

Authors: Kedar S. Prabhavalkar, Nimmy Baby Poovanpallil

Abstract:

Lamotrigine is approved for maintenance treatment of bipolar I disorder. However, its role in the treatment of acute bipolar depression is not well clear. Its efficacy in the treatment of major depressive disorders including refractory unipolar depression suggested the use of lamotrigine as an augmentation drug for acute bipolar depression. The present study aims to evaluate and perform a comparative analysis of the therapeutic effects of lamotrigine, an epileptic mood stabilizer, when used alone and in combination with duloxetine in treating acute bipolar depression at different doses of lamotrigine. Male swiss albino mice were used. For evaluation of efficacy of combination, immobility period was analyzed 30 min after the treatment from forced swim and tail suspension tests. Further amount of sucrose consumed in sucrose preference test was estimated. The combination of duloxetine and lamotrigine showed potentiation of antidepressant activity in acute models. Decrease in immobility time and increase in the amount of sucrose consumption in stressed mice were higher in combined group compared to lamotrigine monotherapy group. Brain monoamine levels were also attenuated more with combination compared to monotherapy. Results of the present study suggest potential role of lamotrigine and duloxetine combination in the treatment of acute bipolar depression.

Keywords: lamotrigine, duloxetine, acute bipolar depression, augmentation

Procedia PDF Downloads 514
2215 Utilising Reuse and Recycling Strategies for Costume Design in Kuwait Theatre

Authors: Ali Dashti

Abstract:

Recycling materials within the realms of theatrical costume design and production is important. When a Kuwaiti play finishes its run, costumes are thrown away and new ones are designed when necessary. This practice indicates a lack of awareness of recycling strategies. This is a serious matter; tons of textile materials are being wasted rather than recycled. The current process of producing costumes for Kuwait theatre productions involves the conception and sketching of costumes, the purchase of new fabrics, and the employment of tailors for production. Since tailoring is outsourced, there is a shortage of designers who can make costumes autonomously. The current process does not incorporate any methods for recycling costumes. This combined with high levels of textile waste, results in significant ecological issues that demand immediate attention. However, data collected for this research paper, from a series of semi-structured interviews, have indicated that a lack of recycling facilities and increased textile waste do not present an area of concern within the Kuwaiti theatrical costume industry. This paper will review the findings of this research project and investigate the production processes used by costume designers in Kuwait. It will indicate how their behaviors, coupled with their lack of knowledge with using recycling strategies to create costumes, had increased textile waste and negatively affected Kuwait theatre costume design industry.

Keywords: costume, recycle, reuse, theatre

Procedia PDF Downloads 170
2214 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast

Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho

Abstract:

UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.

Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast

Procedia PDF Downloads 239
2213 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method

Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.

Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic

Procedia PDF Downloads 305
2212 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis

Authors: Mahdieh Jajroudi

Abstract:

Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.

Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors

Procedia PDF Downloads 373
2211 Deployment of a Product Lifecyle Management (PLM) Solution Towards Digital Transformation

Authors: Asmae Chraibi, Rachid Lghoul, Nabil Rhiati

Abstract:

In the era of Industry 4.0, enterprises are increasingly employing digital technologies in order to improve their product development processes. This research focuses on the strategic deployment of Product Lifecycle Management (PLM) solutions during production as a key tracker of traceability and digital transformation activities. The study explores the integration of PLM within a larger organizational framework, examining its impact on product lifecycle efficiency, corporation, and innovation. Through a comprehensive analysis of a real case study from the automotive industry, this project evaluates the critical success factors and challenges associated with implementing PLM solutions for digital transformation. Moreover, it explores the synergic relationship between PLM and emerging technologies such as 3D experience and SOLIDWORKS, elucidating their combined potential in optimizing production workflows and enabling data-driven decision-making. The study's findings provide global approaches for firms looking to embark on a digital transformation journey by implementing PLM technologies. This research contributes to a better understanding of how PLM can be effectively used to foster innovation and competitiveness in the changing landscape of modern industry by shining light on best practices, critical considerations, and potential obstacles.

Keywords: product lifecyle management (PLM), industry 4.0, traceability, digital transformation, solution, innovation, 3D experience, SOLIDWORKS

Procedia PDF Downloads 80
2210 Impact Study on a Load Rich Island and Development of Frequency Based Auto-Load Shedding Scheme to Improve Service Reliability of the Island

Authors: Md. Shafiullah, M. Shafiul Alam, Bandar Suliman Alsharif

Abstract:

Electrical quantities such as frequency, voltage, current are being fluctuated due to abnormalities in power system. Most of the abnormalities cause fluctuation in system frequency and sometimes extreme abnormalities lead to system blackout. To protect the system from complete blackout planned and proper islanding plays a very important role even in case of extreme abnormalities. Islanding operation not only helps stabilizing a faulted system but also supports power supplies to critical and important loads, in extreme emergency. But the islanding systems are weaker than integrated system so the stability of islands is the prime concern when an integrated system is disintegrated. In this paper, different impacts on a load rich island have been studied and a frequency based auto-load shedding scheme has been developed for sudden load addition, generation outage and combined effect of both to the island. The developed scheme has been applied to Khulna-Barisal Island to validate the effectiveness of the developed technique. Various types of abnormalities to the test system have been simulated and for the simulation purpose CYME PSAF (Power System Analysis Framework) has been used.

Keywords: auto load shedding, FS&FD relay, impact study, island, PSAF, ROCOF

Procedia PDF Downloads 459
2209 Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State

Authors: Rajendra Kumar Isaac, Monisha Isaac

Abstract:

Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.

Keywords: climate variability, agriculture, land use, mitigation strategies

Procedia PDF Downloads 274
2208 Emotional Artificial Intelligence and the Right to Privacy

Authors: Emine Akar

Abstract:

The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.

Keywords: AI, privacy law, data protection, big data

Procedia PDF Downloads 91
2207 Effects of Collection Time on Chemical Composition of Leaf Essential Oils of Hoslundia opposita

Authors: O. E. Ogunjinmi, N. O. Olawore, L. A. Usman, S. O. Ogunjinmi

Abstract:

An essential oil is any concentrated, hydrophobic liquid containing volatile aroma compounds produced by plants. It has been established that several factors affect the component of the plants such as the texture of the soil, relative humidity, wind, and collection time. This study is aimed at investigating the effect of collection time on the chemical composition of this essential oil. Pulverized leaves (500 g) of Hoslundia opposite harvested in the morning (7 am) and afternoon (2 pm) of the same day were separately hydrodistilled using Clevenger apparatus to obtain the essential oils from the leaves. The leaf oils collected in the morning (7 am) and afternoon (2 pm) harvests yielded 0.54 and 0.65 %w/w respectively. Analysis of the leaf oil obtained in the morning, using gas chromatography (GC) and gas chromatography combined mass spectrometry (GC-MS) revealed the presence of twenty-three (23) compounds which made up 81.8% of the total oil while nineteen (19) compounds (93.2%) were identified in the afternoon leaf essential oil. The most abundant components of the leaf oil collected in the morning (7 am) harvest were p-cymene (28.7%), sabinene (7.1%) and 1,8-cineole (6.6%) Meanwhile the major components of leaf oil in the afternoon (2 pm) harvest were p-cymene (26.4%), thymol (15.3%), 1,8-cineole (15.0%) and g-terpinene (10.4%). The composition pattern of leaf oil obtained in the morning and afternoon harvests of Hoslundia opposite revealed significant differences in qualitative and quantitative.

Keywords: essential oil, Hoslundia opposita, para cymene, 1, 8-cineole

Procedia PDF Downloads 397
2206 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 340
2205 Universiti Sains Malaysia

Authors: Eisa A. Alsafran, Francis T. Edum-Fotwe, Wayne E. Lord

Abstract:

The degree to which a public client actively participates in Public Private Partnership (PPP) schemes, is seen as a determinant of the success of the arrangement, and in particular, efficiency in the delivery of the assets of any infrastructure development. The asset delivery is often an early barometer for judging the overall performance of the PPP. Currently, there are no defined descriptors for the degree of such participation. The lack of defined descriptors makes the association between the degree of participation and efficiency of asset delivery, difficult to establish. This is particularly so if an optimum effect is desired. In addition, such an association is important for the strategic decision to embark on any PPP initiative. This paper presents a conceptual model of different levels of participation that characterise PPP schemes. The modelling was achieved by a systematic review of reported sources that address essential aspects and structures of PPP schemes, published from 2001 to 2015. As a precursor to the modelling, the common areas of Public Client Participation (PCP) were investigated. Equity and risk emerged as two dominant factors in the common areas of PCP, and were therefore adopted to form the foundation of the modelling. The resultant conceptual model defines the different states of combined PCP. The defined states provide a more rational basis for establishing how the degree of PCP affects the efficiency of asset delivery in PPP schemes.

Keywords: asset delivery, infrastructure development, public private partnership, public client participation

Procedia PDF Downloads 269
2204 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO

Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan

Abstract:

Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.

Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis

Procedia PDF Downloads 340
2203 Investigating Nurses’ Burnout Experiences on TikTok

Authors: Claire Song

Abstract:

Background: TikTok is an emerging social media platform creating an outlet for nurses to express and communicate their nursing experiences and stress related to nursing. Purpose: This study investigates the lived experiences of nursing burnout shared on TikTok. Method: The cross-sectional content analysis examines the video content, format, type, and quantitative indicators, including the number of likes and comments. Results: A total of 35 videos and 18616 comments were examined, published between November 2020 and May 2023. Combined, these 35 videos received 24859 comments and 1159669 of likes. Most of the videos included nurses, and 12 included nurses in professional attire. Three videos included interviewers in the video, but the rest of the videos were self-recorded. Four themes of nurses’ burnout experiences were identified: 1) high-intensity work environment, 2) negative internal perception, 3) culture of nursing work, and 4) poor teamwork experience. Conclusion: This study explored the description of nurses’ burnout experiences via a creative platform. Social media, such as TikTok, is a valuable outlet for healthcare providers to express and share their experiences. Future research might consider using the social media platform to explore coping strategies and resilience in nurses who experienced burnout.

Keywords: burnout, emotional wellbeing, nursing, social media

Procedia PDF Downloads 89
2202 Expression of Hypoxia-Inducible Transmembrane Carbonic Anhydrases IX, Ca XII and Glut 1 in Ovarian Cancer

Authors: M. Sunitha, B. Nithyavani, Mathew Yohannan, S. Thiruvieni Balajji, M. A. Rathi, C. Arul Raj, P. Ragavendran, V. K. Gopalkrishnan

Abstract:

Establishment of an early and reliable biomarker for ovarian carcinogenesis whose expression can be monitored through noninvasive techniques will enable early diagnosis of cancer. Carbonic anhydrases (CA) isozymes IX and XII have been suggested to play a role in oncogenic processes. In von Hippel-Lindau (VHL)-defective tumors, the cell surface transmembrane carbonic anhydrase (CA) CA XI and CA XII genes are overexpressed because of the absence of pVHL. These enzymes are involved in causing a hypoxia condition, thereby providing an environment for metastasis. Aberrant expression of the facilitative glucose transporter GLUT I is found in a wide spectrum of epithelial malignancies. Studying the mRNA expression of CA IX, CA XII and Glut I isozymes in ovarian cancer cell lines (OAW-42 and PA-1) revealed the expression of these hypoxia genes. Immunohistochemical staining of carbonic anhydrases was also performed in 40 ovarian cancer tissues. CA IX and CA XII were expressed at 540 bp and 520 bp in OAW42, PA1 in ovarian cancer cell lines. GLUT-1 was expressed at 325bp in OAW 42, PA1 genes in ovarian cancer cell lines. Immunohistochemistry revealed high to moderate levels of expression of these enzymes. The immuostaining was seen predominantly on the cell surface membrane. The study concluded that these genes CA IX, CA XII and Glut I are expressed under hypoxic condition in tumor cells. From the present results expression of CA IX, XII and Glut I may represent potential targets in ovarian cancer therapy.

Keywords: ovarian cancer, carbonic anhydrase IX, XII, Glut I, tumor markers

Procedia PDF Downloads 370
2201 Investigation of Kinesiophobia in Individuals with Type 2 Diabetes

Authors: Ismail Okur, Betul Taspinar, Turkan Pasali Kilit, Eda O. Okur, Ferruh Taspinar

Abstract:

Type 2 Diabetes Mellitus (T2DM) is one of the most important global health emergencies and every year more and more people are affected by T2DM. T2DM causes life-changing complications by affecting organ and systems. Although diet and exercise are the best way to treat patients with T2DM, those patients generally have a sedentary life style. This study was planned to determine whether patients with T2DM have kinesiophobia (fear of movement). A controlled trial was conducted on 87 adults. Forty-one individuals with T2DM (study group, 34 female and 7 male) and 46 nondiabetic individuals (control group, 39 female and 7 male) were included in the study. Patients were screened for fear of movement using the Tampa Scale for Kinesiophobia (TSK). The data including age, sex, weight, height, and TSK scores were obtained. Mann Whitney U test were used to analyse the data. The mean ages and BMI of study and control groups were 51.98 ± 6.03 year and 49.52 ± 5.61 year and 31.82 ± 2.88 kg/m2 and 30.22 ± 2.91 kg/m2, respectively. The groups have similar demographic properties. The kinesiophobia scores of study and control groups were 42.78 ± 5.50 and 39.48 ± 5.05, respectively and the difference was statistically significant (p=0.05). This study showed that patients with T2DM had high kinesiophobia scores rather than nondiabetics. Those patients might avoid to do exercise. In other words, patients with T2DM might have lower physical activity level. Therefore the authors suggest that to evaluate and interfere with kinesiophobia before conducting exercise therapy will be useful for diabetes care.

Keywords: diabetes, fear of movement, kinesiophobia, type 2 diabetes mellitus

Procedia PDF Downloads 381
2200 LncRNA NEAT1 Promotes NSCLC Progression through Acting as a ceRNA of miR-377-3p

Authors: Chengcao Sun, Shujun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Dejia Li

Abstract:

Recently, the long non-coding RNA (lncRNA) NEAT1 has been identified as an oncogenic gene in multiple cancer types and elevated expression of NEAT1 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in progression of non-small cell lung cancer (NSCLC). In our studies, we identified NEAT1 was highly expressed in NSCLC patients and was a novel regulator of NSCLC progression. Patients whose tumors had high NEAT1 expression had a shorter overall survival than patients whose tumors had low NEAT1 expression. Further, NEAT1 significantly accelerates NSCLC cell growth and metastasis in vitro and tumor growth in vivo. Additionally, by using bioinformatics study and RNA pull down combined with luciferase reporter assays, we demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for has-miR-377-3p, antagonized its functions and led to the de-repression of its endogenous targets E2F3, which was a core oncogene in promoting NSCLC progression. Taken together, these observations imply that the NEAT1 modulated the expression of E2F3 gene by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and NSCLC progression.

Keywords: long non-coding RNA NEAT1, hsa-miRNA-377-3p, E2F3, non-small cell lung cancer, tumorigenesis

Procedia PDF Downloads 375
2199 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 352
2198 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 495
2197 The Use of Phototherapy with Unusual Case Studies in Counselling

Authors: Briar Schulz

Abstract:

The use of phototherapy within the counselling room offers significant advantages in extending far beyond typical "talk therapy" avenues. The benefits of using this approach are numerous and include: efficiency in recalling pertinent information in addition to utilizing a visual lens that often captures opulent detail that can be eluded in traditional dialogue. The goal of this presentation is to provide conference attendees with an opportunity to understand the therapeutic benefits and creative possibilities of incorporating photography into the clinical counselling process. This includes practical strategies for using in specific case studies, where studies of phototherapy have previously been limited. Ethical considerations and limitations to the process will also be addressed. Attendees will observe the benefits of using phototherapy with six longitudinal case studies including: a 30 year old female, with anorexia nervosa; a 22 year old self-harming individual with obsessive compulsive disorder; a 24 year old client with developmental delays, and bipolar disorder; a 14 year old client with Autism; and two clients with rare medical conditions struggling with depression and anxiety, one 21 years old and the other 16 years old. Aspects of each case will be linked to various theoretical modalities to highlight the efficiency and benefits of phototherapy in drawing important clinical conclusions. Furthermore, the use of phototherapy within these clinical areas remains a relatively unexplored area of the literature, and possibilities for future research will be highlighted. Finally, conference attendees will have the opportunity to try various phototherapy strategies within the interactive portion of this presentation. .

Keywords: Atypical, Case studies, Phototherapy, Photovoice

Procedia PDF Downloads 153
2196 Effect of Scaling and Root Planing on Improvement of Glycemic Control in Periodontitis Patients with Type-2 Diabetes Mellitus

Authors: Shivalal Sharma, Sanjib K. Sharma, Madhab Lamsal

Abstract:

Background: The aim of this study was to evaluate the clinical and laboratory changes three months after full-mouth scaling and root planing (SRP) in periodontitis patients with type 2 diabetes mellitus (DM). Methods: Forty-seven type 2 DM subjects with moderate to severe periodontitis were randomly divided into two groups. Treatment group (TG), 25 subjects, received full-mouth scaling and root planning; control group (CG), 22 subjects, received no treatment. At baseline and at the end of three months, glycated hemoglobin (HbA1c) values, fasting glucose, and clinical parameters like plaque index (PI), gingival index (GI), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded in all the patients. Following SRP, the patients were enrolled in a monthly interval maintenance program for 3 months. Results: A statistically significant effect could be demonstrated for PI, GI, PPD, and CAL for the treatment group. HbA1c levels in the treatment group decreased significantly whereas the control group showed a slight but insignificant increase for these parameters. Conclusions: The results of this study showed that non-surgical periodontal treatment (SRP) is associated with improved glycemic control in type 2 DM patients and could be undertaken along with the standard measures for the diabetic patient care.

Keywords: periodontitis, type 2 diabetes mellitus, non-surgical periodontal therapy, SRP

Procedia PDF Downloads 305
2195 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis

Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu

Abstract:

Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.

Keywords: GPT, phantom-less QCT, large language model, osteoporosis

Procedia PDF Downloads 74
2194 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 121
2193 Combined Analysis of m⁶A and m⁵C Modulators on the Prognosis of Hepatocellular Carcinoma

Authors: Hongmeng Su, Luyu Zhao, Yanyan Qian, Hong Fan

Abstract:

Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that endanger human health seriously. RNA methylation, especially N6-methyladenosine (m⁶A) and 5-methylcytosine (m⁵C), a crucial epigenetic transcriptional regulatory mechanism, plays an important role in tumorigenesis, progression and prognosis. This research aims to systematically evaluate the prognostic value of m⁶A and m⁵C modulators in HCC patients. Methods: Twenty-four modulators of m⁶A and m⁵C were candidates to analyze their expression level and their contribution to predict the prognosis of HCC. Consensus clustering analysis was applied to classify HCC patients. Cox and LASSO regression were used to construct the risk model. According to the risk score, HCC patients were divided into high-risk and low/medium-risk groups. The clinical pathology factors of HCC patients were analyzed by univariate and multivariate Cox regression analysis. Results: The HCC patients were classified into 2 clusters with significant differences in overall survival and clinical characteristics. Nine-gene risk model was constructed including METTL3, VIRMA, YTHDF1, YTHDF2, NOP2, NSUN4, NSUN5, DNMT3A and ALYREF. It was indicated that the risk score could serve as an independent prognostic factor for patients with HCC. Conclusion: This study constructed a Nine-gene risk model by modulators of m⁶A and m⁵C and investigated its effect on the clinical prognosis of HCC. This model may provide important consideration for the therapeutic strategy and prognosis evaluation analysis of patients with HCC.

Keywords: hepatocellular carcinoma, m⁶A, m⁵C, prognosis, RNA methylation

Procedia PDF Downloads 70
2192 Investigating Factors Influencing Generation Z’s Pro-Environmental Behavior to Support the Energy Transition in Jakarta, Indonesia

Authors: Phimsupha Kokchang, Divine Ifransca Wijaya

Abstract:

The energy transition is crucial for mitigating climate change and achieving sustainable development and resilience. As the energy transition advances, generation Z is entering the economic world and will soon be responsible for taking care of the environment. This study aims to investigate the factors influencing generation Z’s pro-environmental behavior to support the energy transition. The theory of planned behavior approach was combined with the pro-environmental behavior concept to examine generation Z’s support toward the energy transition through participating in activism, using energy from renewable sources, opting for energy-efficient utilities or vehicles, and influencing others. Data were collected through an online questionnaire of 400 respondents aged 18-26 living in Jakarta, Indonesia. Partial least square structural equation modeling (PLS-SEM) using SmartPLS 3.0 software was used to analyze the reliability and validity of the measurement model. The results show that attitude, subjective norms, and perceived behavior control positively correlate with generation Z’s pro-environmental behavior to support the energy transition. This finding could enhance understanding and provide insights to formulate effective strategies and policies to increase generation Z’s support towards the energy transition. This study contributes to the energy transition discussion as it is included in the Sustainable Development Goals, as well as pro-environmental behavior and theory of planned behavior literature.

Keywords: energy transition, pro-environmental behavior, theory of planned behavior, generation Z

Procedia PDF Downloads 123
2191 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 253
2190 The Use of Robots for Children and Young People on the Autism Spectrum: A Systematic Review

Authors: Athanasia Kouroupa

Abstract:

Existing research highlights the effect of employing robots in sessions with children and young people on the autism spectrum to develop and practice skills important to independent and functional living. The systematic review aimed to explore the way robots has been used with children and young people on the autism spectrum and the effect of using robots as a therapeutic interface. An electronic bibliographic database search using a combination of expressions was conducted. Data were extracted in relation to robot types, session characteristics, and outcomes and analysed using narrative synthesis. Forty studies were selected in the review. Humanoid robots were predominantly used to practice a range of social and communication skills. On average, children and young people on the autism spectrum had five sessions, twice a week, for approximately half an hour. Having sessions with a robot was commonly equal to or more effective than 'traditional' interventions delivered by a human therapist or having no therapy. The review reported encouraging outcomes to practice and develop a range of skills with children and young people on the autism spectrum. These findings suggest that some form of intervention is favourable over no intervention. However, there is little evidence for the relative effectiveness of the robot-based intervention as an innovative alternative option. Many of the studies had methodological weaknesses that make them vulnerable to bias. There is a need for further research that adheres to strict scientific methods making direct comparisons between different treatment options.

Keywords: autism, children, robots, outcomes

Procedia PDF Downloads 144