Search results for: Asmae Chraibi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: Asmae Chraibi

5 Deployment of a Product Lifecyle Management (PLM) Solution Towards Digital Transformation

Authors: Asmae Chraibi, Rachid Lghoul, Nabil Rhiati

Abstract:

In the era of Industry 4.0, enterprises are increasingly employing digital technologies in order to improve their product development processes. This research focuses on the strategic deployment of Product Lifecycle Management (PLM) solutions during production as a key tracker of traceability and digital transformation activities. The study explores the integration of PLM within a larger organizational framework, examining its impact on product lifecycle efficiency, corporation, and innovation. Through a comprehensive analysis of a real case study from the automotive industry, this project evaluates the critical success factors and challenges associated with implementing PLM solutions for digital transformation. Moreover, it explores the synergic relationship between PLM and emerging technologies such as 3D experience and SOLIDWORKS, elucidating their combined potential in optimizing production workflows and enabling data-driven decision-making. The study's findings provide global approaches for firms looking to embark on a digital transformation journey by implementing PLM technologies. This research contributes to a better understanding of how PLM can be effectively used to foster innovation and competitiveness in the changing landscape of modern industry by shining light on best practices, critical considerations, and potential obstacles.

Keywords: product lifecyle management (PLM), industry 4.0, traceability, digital transformation, solution, innovation, 3D experience, SOLIDWORKS

Procedia PDF Downloads 35
4 Micro-Electrical Discharge Machining (µEDM): Effect of the Electrochemical Etching Parameters on the Fabrication of Cylindrical Tungsten Micro-Tools

Authors: Asmae Tafraouti, Yasmina Layouni

Abstract:

The fabrication of cylindrical Tungsten micro-tools with a high aspect ratio is a real challenge because of several constraints that come into during their manufacture. In this paper, we will describe the process used to fabricate these micro-tools. It consists of using electrochemical etching. We will also present the optimal protocol that makes it possible to fabricate micro-tools with a high aspect ratio in a reproducible way. Next, we will show the limit of the experimental parameters chosen to manufacture micro-tools from a wire with an initial diameter of Φ_0=250µm. The protocol used allows obtaining an average diameter of Φ=88µm ±1 µm over a length of L=3.5mm.

Keywords: drop-off effect, electrochemical etching, micro-electrical discharge machining, tungsten micro-tools

Procedia PDF Downloads 158
3 Motivational Profiles of Choice of Medical Studies: Cross-Sectional Study

Authors: Rajae Tahri, Omar Chokairi, Asmae Saadi, Souad Chaouir

Abstract:

Background: The factors motivating students to choose a medical career is a long-standing topic of publication and discussion. To our knowledge, no national study on the motivation for choosing medical studies has been published to date. Population and methods: This is an observational, descriptive, and cross-sectional study of first-year medical students at the Faculty of Medicine and Pharmacy of Rabat. An anonymous questionnaire comprising 16 questions was developed and distributed to students during Embryology tutorials. The students were free to fill it in or not. The number of students who consented to participate in the survey was 266. The variables studied are the socio-demographic variables of the students and the reasons for choosing medical studies. Results: The most strongly and frequently chosen reasons for choice by our students were saving lives (64.9%), helping others (62.1%), love of medicine (57%), and reducing suffering (56.5%). The comparison of the results according to gender showed a significant difference between the degree of self-motivation of girls compared to that of boys (p <0.001). The reason that stood out the most for them was teamwork. The presence of a health professional in the family was associated with strong extrinsic motivation (p = 0.005). Conclusion: Understanding medical student career choices would improve our knowledge of the factors that influence medical student learning and performance. This knowledge will make it possible to adapt the educational strategies to maintain the motivation of the students throughout their course as well as during their exercise.

Keywords: motivation, motivational profiles, medical studies, Morocco

Procedia PDF Downloads 57
2 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems

Procedia PDF Downloads 43
1 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 66