Search results for: protein adsorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3270

Search results for: protein adsorption

960 SOCS1 Inhibits MDR1 in Mammary Cell Carcinoma Reverses Multidrug Resistance

Authors: Debasish Pradhan, Shaktiprasad Pradhan, Rakesh Kumar Pradhan, Gitanjali Tripathy

Abstract:

Suppressors of cytokine signalling (SOCS1), a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signalling pathway. The current study has uncovered that SOCS1 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS1 on MDR, we analyzed the expression of P-gp and SOCS1 by immunohistochemistry and found there was a positive correlation between them. At that point, we effectively interfered with RNA translation by the contamination of siRNA of SOCS1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi, the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise, the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flow cytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS1 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.

Keywords: breast cancer, multidrug resistance, SOCS1 gene, MDR1 gene, RNA interference

Procedia PDF Downloads 356
959 Characteristic of Gluten-Free Products: Latvian Consumer Survey

Authors: Laila Ozola, Evita Straumite

Abstract:

Celiac disease is a permanent enteropathy caused by the ingestion of gluten, a protein occurring in wheat, rye and barley. The only way of the effective daily treatment is a strict gluten-free diet. From the investigation of products available in the local market, it was found that Latvian producers do not offer gluten-free products. The aim of this research was to study and analyze changes of celiac patient’s attitude to gluten-free product quality and availability in the Latvian market and purchasing habits. The survey was designed using website www.visidati.lv, and a questionnaire was sent to people suffering from celiac disease. The first time the respondents were asked to fill in the questionnaire in 2011, but now repeatedly from the beginning of September 2013 till the end of January 2014. The questionnaire was performed with 75 celiac patients, respondents were from all Latvian regions and they answered 16 questions. One of the most important questions was aimed to find out consumers’ opinion about quality of gluten-free products, consumption patterns of gluten-free products, and, moreover, their interest in products made in Latvia. Respondents were asked to name gluten-free products they mainly buy and give specific purchase locations, evaluate the quality of products and necessity for products produced in Latvia. The results of questionnaire show that the consumers are satisfied with the quality of gluten-free flour, flour blends, sweets and pasta, but are not satisfied with the quality of bread and confectionery available in the Latvian markets.

Keywords: consumers, gluten-free products, quality, survey

Procedia PDF Downloads 283
958 Supplementation of Mannan Oligosaccharides in Guinea Pigs: Mortality and Growth Performance

Authors: C. Minguez, J. Bueso-Rodenas, C. Ibanez, A. Calvo

Abstract:

Mannan oligosaccharides (MOS) is one of the prebiotic most used in livestock nutrition. In this research, the effect of MOS dietary supplementation on growth performance and mortality in meat guinea pigs were studied. Three different experimental groups were compared: Control group (no additives); MOS 1 (1.5 g kg−1); MOS 2 (2 g kg−1). Guinea pigs were housed in 15 collective cages (n = 50 animals in each trial; 10 animals per cage). The young guinea pigs were weaning at day 28 and individually identified by a little ear tag. The fattening period was 49 days. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat) and alfalfa (Medicago sativa) as forage. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered. Contrasts between groups were obtained by calculated generalized least squares values. Mortality were evaluated by Fisher's exact test. Between MOS groups no significant differences were observed for growth traits and mortality. However, significant differences against the control group were observed for traits studied (pvalue < 0.05). In conclusion, the use of MOS could be a good prebiotic supplement to raise guinea pigs because it MOS has shown positive effects in growth traits and immune response in animals.

Keywords: guinea pig, growth, mannan oligosaccharides, mortality

Procedia PDF Downloads 140
957 Autophagy Regulates Human Hepatocellular Carcinoma Tumorigenesis through Selective Degradation of Cyclin D1

Authors: Shan-Ying Wu, Sheng-Hui Lan, Xi-Zhang Lin, Ih-Jen Su, Ting-Fen Tsai, Chia-Jui Yen, Tsung-Hsueh Lu, Fu-Wen Liang, Huey-Jen Su, Chun-Li Su, Hsiao-Sheng Liu

Abstract:

In hepatocelluar carcinoma (HCC), dysregulated expression of cyclin D1 and impaired autophagy has been reported separately. However, the relationship between them has not been explored. In this study, we demonstrated that autophagy was inversely correlated with cyclin D1 expression in 147 paired HCC patient specimens. HCC specimen with highly expression of cyclin D1 shows correlation with poor overall survival rate. Furthermore, induction of autophagy by amiodarone (antiarrhythmic drug) in Hep 3B cells, cyclin D1 was recruited into autophagosomes demonstrated by immune-gold labeling of cyclin D1 after extraction of autophagosomes. We further demonstrated that autophagy suppresses Hep 3B cell proliferation, and further analysis revealed that cell cycle was arrested at G1 phase. The interaction between LC3 (maker of autophagy) and cyclin D1 was increased after autophagy induction. In addition, ubiquitinated-cyclin D1 was also increased after autophagy induction, which is selectively degraded by autophagosome through binding with SQSTM1/p62 (an adaptor protein). In vivo study showed that amiodarone induced autophagy suppresses liver tumor formation in xenograft mouse and orthotopic rat model through decreasing cyclin D1 expression and inhibition of cell proliferation. Altogether, we reveal a novel mechanism that ubiquitinated cyclin D1 degraded by autophagic pathway by p62 and amiodarone is a promising drug for targeting cyclin D1 in liver cancer therapy.

Keywords: autophagy, cyclin D1, hepatocellular carcinoma, amiodarone

Procedia PDF Downloads 296
956 Phylogenetic Analyses of Newcastle Disease Virus Isolated from Unvaccinated Chicken Flocks in Kyrgyzstan from 2015 to 2016

Authors: Giang Tran Thi Huong, Hieu Dong Van, Tung Dao Duy, Saadanov Iskender, Isakeev Mairambek, Tsutomu Omatsu, Yukie Katayama, Tetsuya Mizutani, Yuki Ozeki, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai

Abstract:

Newcastle disease virus (NDV) is a contagious viral disease of the poultry industry and other birds throughout the world. At present, very little is known about molecular epidemiological data regarding the causes of ND outbreak in commercial poultry farms in Kyrgyzstan. In the current study, the NDV isolated from the one out of three samples from the unvaccinated flock was confirmed as NDV. Phylogenetic analysis indicated that this NDV strain is clustered in the Class II subgenotype VIId, and closely related to the Chinese NDV isolate. Phylogenetic analyses revealed that the isolated NDV strain has an origin different from the 4 NDV strains previously identified in Kyrgyzstan. According to the mean death time (MDT: 61.1 h) and a multibasic amino acid (aa) sequence at the F0 proteolytic cleavage site (¹¹²R-R-Q-K-R-F¹¹⁷), the NDV isolate was determined as mesogenic strain. Several mutations in the neutralizing epitopes (notably, ³⁴⁷E→K) and the global head were observed in the hemagglutinin-neuraminidase (HN) protein of the current isolate. The present study represents the molecular characterization of the coding gene region of NDV in Kyrgyzstan. Additionally, further study will be investigated on the antigenic characterization using monoclonal antibody.

Keywords: Kyrgyzstan, Newcastle disease, genotype, genome characterization

Procedia PDF Downloads 143
955 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 234
954 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids

Authors: Muhammad Mazhar, Yong Zhu, Likang Qin

Abstract:

Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.

Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes

Procedia PDF Downloads 73
953 Effect of Erythropoietin Hormone Supplementation on Hypoxia-Inducible Factor1-Alpha in Rat Kidneys with Experimental Diabetic Nephropathy

Authors: Maha Deif, Alaa Eldin Hassan, Eman Shaat, Nesrine Elazhary, Eman Magdy

Abstract:

Background: Erythropoietin (EPO) is a hematopoietic factor with multiple protective effects. The aim of the present study was to investigate the potential effect of EPO administration on renal functions and hypoxia inducible factor 1-alpha (HIF-1a) in diabetic rat kidneys. Methodology: The current study was carried out on 40 male albino rats divided into four groups (n= 10 in each). Group I served as normal control, group II was the diabetic control, group III rats received EPO on the same day of diagnosis of diabetes mellitus (DM), while group IV received the first dose of EPO 2 weeks after the diagnosis of DM. Results: The results showed that EPO supplementation leads to a significant decrease in serum urea, urinary protein and creatinine clearance as well as a significant increase in renal HIF-1a in group III and IV rats compared to the diabetic control group (group II). However, fasting blood glucose was significantly decreased in group III as compared to the diabetic control group in the third week, but no significant difference was reported in the fourth week among groups II, III and IV. Conclusion: EPO administration leads to the improvement of renal functions and increased levels of HIF-1a in diabetic rats.

Keywords: erythropoietin, diabetic nephropathy, hypoxia-inducible factor1-alpha, renal functions

Procedia PDF Downloads 287
952 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases

Authors: Uzma Saqib, Mirza S. Baig

Abstract:

Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.

Keywords: drug design, Nur77, MYD88, inflammation

Procedia PDF Downloads 306
951 Developing Drought and Heat Stress Tolerant Chickpea Genotypes

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) with high protein content is a vital food, especially in under-developed and developing countries for the people who do not consume enough meat due to low-income level. The objective of the proposed study is to evaluate growing, yield and yield components of chickpea genotypes under Mediterranean condition so determine tolerance of chickpea genotypes against drought and heat stress. For this purpose, a total of 34 chickpea genotypes were used as material. The experiment was conducted according to factorial randomized complete block design with 3 reps at the Eastern Mediterranean Research Institute, Adana, TURKEY for 2014-15 growing season under three different growing conditions (Winter sowing, irrigated-late sowing and non-irrigated- late sowing). According to results of this experiment, vegetative period, flowering time, poding time, maturity time, plant height, height of first pod, seed yield and 100 seed weight were ranged between 68.33 to 78.77 days, 94.22 to 85.00 days, 94.11 to 106.44 days, 198.56 to 214.44 days, 37.18 to 64.89 cm, 18.33 to 34.83 cm, 417.1 to 1746.4 kg/ha and 14.02 to 45.02 g, respectively. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were least affected by drought and heat stress. Therefore, these genotypes can be used as sources of drought and heat tolerance in further breeding programme for evolving the drought and heat tolerant genotypes in chickpea.

Keywords: chickpea, drought stress, heat stress, yield

Procedia PDF Downloads 229
950 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.

Keywords: biosorption, brown marine macroalgae, copper, ion-exchange

Procedia PDF Downloads 328
949 Effect of Nicorandil in Bile Duct Ligation-Induced Liver Fibrosis in Rats: Role of Hepatic Stellate Cells

Authors: Y. S. Mohamed, L. A. Ahmed, H. A. Salem, A. M. Agha

Abstract:

Liver Fibrosis is one of the most serious conditions that affect the Egyptian society. In the present study, the effect of nicorandil was investigated in experimentally-induced liver fibrosis by bile duct ligation in rats. Nicorandil (3mg/kg/day) was given orally 24 h after bile duct ligation for 14 days till the end of the experiment. Nicorandil group showed a significant improvement in liver function tests (ALT and ALP) as well as a significant decrease in oxidative stress biomarkers (TBARS and GSH), area of fibrosis and activity of hepatic stellate cells as indicated by decreased expression of alpha smooth muscle actin.Moreover, nicorandil treatment decreased HSCs proliferation due to its inhibitory effects on protein kinase C(PKC) and Platelet derived growth factor (PDGF) . Oral administration of either glibenclamide (10 mg/kg/day)(a KATP channel blocker) or L-NAME (30 mg/kg/day) (an inhibitor of nitric oxide synthase) blocked the protective effects of nicorandil. However, nicorandil and L-NAME treated group showed more or less results similar to that of untreated bile duct ligated group. In conclusion, nicorandil was effective against the development of bile duct ligated-induced liver fibrosis in rats where activation of the NO pathway plays an important role in the protective effect nicorandil.

Keywords: hepatic stellate cells, nicorandil, nitric oxide donor, liver fibrosis

Procedia PDF Downloads 614
948 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant

Authors: Maria Altamirano, Alfonso Duran

Abstract:

Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.

Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism

Procedia PDF Downloads 192
947 Sustainable Improvement in Soil Properties and Maize Performance by Organic Fertilizers at Different Levels

Authors: Shahid Iqbal, Haroon Z. Khan, Muhammad Arif

Abstract:

A sustainable agricultural system involving the improvement in soil properties and crop performance cannot be developed without organic fertilizer use. The effects of poultry manure compost (PMC) and pressmud compost (PrMC) at different levels on improving the soil properties and maize performance has not been yet described by any study comprehensively. Thus, field experiments (2011 and 2012) were conducted at Agronomy Research Area, University of Agriculture Faisalabad (31°26'5" N and 73°4'6" E) in sandy loam soil to determine the improvement in soil properties and maize performance due to application of PMC and PrMC each at five different levels (2, 4, 6, 8 and 10 t ha-1). A control (unamended) treatment was also included for comparison. The results indicated that performance of PMC levels was superior to PrMC levels. Increasing both composts levels improved soil properties, maize growth, and stover yield. Results showed that during both years’ highest rates of PMC i.e. 10 and 8 t ha-1 improved the soil properties: ECe, pH, inorganic N, OM, and WHC higher than other treatments. While, 10 and 8 t PMC ha-1 also significantly increased leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR), and stover yield. Similarly, 10 and 8 t PMC ha-1 also improved the grain protein content, but contrarily, grain oil was lowest for 10 and 8 t ha-1 PMC during both years. Moreover, in both years highest gross and net income, and benefit cost ratio was also achieved by 10 and 8 t ha-1 PMC. It is concluded that PMC at rate of 10 and 8 t ha-1 sustainably improved soil properties and maize performance.

Keywords: compost, soil, maize, growth, yield

Procedia PDF Downloads 365
946 Feasibility of Chicken Feather Waste as a Renewable Resource for Textile Dyeing Processes

Authors: Belayihun Missaw

Abstract:

Cotton cationization is an emerging area that solves the environmental problems associated with the reactive dyeing of cotton. In this study, keratin hydrolysate cationizing agent from chicken feather was extracted and optimized to eliminate the usage of salt during dyeing. Cationization of cotton using the extracted keratin hydrolysate and dyeing of the cationized cotton without salt was made. The effect of extraction parametric conditions like concentration of caustic soda, temperature and time were studied on the yield of protein from chicken feather and colour strength (K/S) values, and these process conditions were optimized. The optimum extraction conditions were. 25g/l caustic soda, at 500C temperature and 105 minutes with average yield = 91.2% and 4.32 colour strength value. The effect of salt addition, pH and concentration of cationizing agent on yield colour strength was also studied and optimized. It was observed that slightly acidic condition with 4% (% owf) concentration of cationizing agent gives a better dyeability as compared to normal cotton reactive dyeing. The physical properties of cationized-dyed fabric were assessed, and the result reveals that the cationization has a similar effect as normal dyeing of cotton. The cationization of cotton with keratin extract was found to be successful and economically viable.

Keywords: cotton materials, cationization, reactive dye, keratin hydrolysate

Procedia PDF Downloads 65
945 Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish

Authors: Saji George, Eng Khuan Seng, Christof Luda

Abstract:

Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture.

Keywords: nanotechnology, fish-vaccine, drug-delivery, halloysite-chitosan

Procedia PDF Downloads 285
944 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer

Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang

Abstract:

Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.

Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase

Procedia PDF Downloads 413
943 Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3

Authors: Yina A. Cifuentes Triana, Andrés M. Pinzón Velásco, Marío E. Velásquez Lozano

Abstract:

In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose.

Keywords: cellulosic ethanol, Saccharomyces cerevisiae, genome sequencing, xylose consumption

Procedia PDF Downloads 322
942 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 534
941 Investigating the Role of Dystrophin in Neuronal Homeostasis

Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh

Abstract:

Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.

Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport

Procedia PDF Downloads 97
940 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study

Authors: Shalini Arora, Sri Sivakumar

Abstract:

The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.

Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction

Procedia PDF Downloads 267
939 Dietary Pattern and Risk of Breast Cancer Among Women:a Case Control Study

Authors: Huma Naqeeb

Abstract:

Epidemiological studies have shown the robust link between breast cancer and dietary pattern. There has been no previous study conducted in Pakistan, which specifically focuses on dietary patterns among breast cancer women. This study aims to examine the association of breast cancer with dietary patterns among Pakistani women. This case-control research was carried in multiple tertiary care facilities. Newly diagnosed primary breast cancer patients were recruited as cases (n = 408); age matched controls (n = 408) were randomly selected from the general population. Data on required parameters were systematically collected using subjective and objective tools. Factor and Principal Component Analysis (PCA) techniques were used to extract women’s dietary patterns. Four dietary patterns were identified based on eigenvalue >1; (i) veg-ovo-fish, (ii) meat-fat-sweet, (iii) mix (milk and its products, and gourds vegetables) and (iv) lentils - spices. Results of the multiple regressions were displayed as adjusted odds ratio (Adj. OR) and their respective confidence intervals (95% CI). After adjusted for potential confounders, veg-ovo-fish dietary pattern was found to be robustly associated with a lower risk of breast cancer among women (Adj. OR: 0.68, 95%CI: (0.46-0.99, p<0.01). The study findings concluded that attachment to the diets majorly composed of fresh vegetables, and high quality protein sources may contribute in lowering the risk of breast cancer among women.

Keywords: breast cancer, dietary pattern, women, principal component analysis

Procedia PDF Downloads 123
938 Use of High Hydrostatic Pressure as an Alternative Preservation Method for Fresh Dates, Rutab

Authors: Salah Mohammed Al-Eid, Siddig Hussein Hamad, Fahad Mohammed Aljassas

Abstract:

The effects of high hydrostatic pressure (HHP) treatments on microbial contamination, chemical and physical properties of fresh dates (Rutab stage) were studied. Khalas, Barhi and Hilali cultivars were treated at 200, 250, 300 and 350 MPa using HHP research apparatus. The objective of such treatments was to preserve fresh dates without adversely affecting its properties. Treating fresh dates at 300 MPa for 5 minutes at 40°C reduced microbial contamination in about 2.5 log cycles. Applying 250 MPa was enough to control Rutab contamination with molds, yeasts, and coliforms. Both treatments were enough to reduce Rutab microbial contamination to acceptable levels. HHP caused no significant effect on Rutab chemical properties (moisture, sugars, protein, pectin and acidity). However, a slight decrease in moisture contents due to HHP was observed. Rutab lightness (L*) significantly decreased due to the application of HHP. Only Rutab treated at 300 MPs gave lower redness (a*) values compared with an untreated sample. The effect of 300 MPa on increasing yellowness (b*) was observed for Barhi and Hilali but decreasing for Khalas. The hardness of all Rutab cultivars significantly decreased as a result of HHP application. In fact, the pressure applied at 300 MPa had an adverse effect on texture, which may limit its suitability for use in Rutab preservation.

Keywords: high hydrostatic pressure, fresh dates (Rutab), microbial contamination, color, texture

Procedia PDF Downloads 293
937 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent

Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja

Abstract:

This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.

Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater

Procedia PDF Downloads 124
936 The Transcriptional Regulation of Human LRWD1 through DNA Methylation

Authors: Yen-Ni Teng, Hsing-Yi Chen, Hsien-An Pan, Yung-Ming Lin, Hany A. Omar, Jui-Hsiang Hung

Abstract:

Leucine-rich repeats and WD repeat domain containing 1 (LRWD1) is highly expressed in the testes of healthy males. On the other hand, LRWD1 is significantly down-regulated in the testicular tissues of patients with severe spermatogenic defects. In our study, the downregulation of LRWD1 expression by shRNA caused a significant reduction of cell growth and mitosis and a noteworthy increase in the cell microtubule atrophy rate. Here, we used EMBOSS CpG plot analysis to explore the promoter region of LRWD1 gene. We found that CpG islands are located between positions -253 to +5 nucleotides upstream from the LRWD1 transcription start site. Luciferase reporter assay revealed that the hypermethylation of the LRWD1 promoter reduced the transcription activity in cells. In addition, quantitative methylation-specific PCR and immunostaining showed that the methylation inhibitor, 5-Aza-2'-deoxycytidine, increased LRWD1 promoter activity, LRWD1 mRNA, protein expression and cell viability. Whereas, the methylation activator, S-adenosylmethionine, caused opposite effects. The overexpression of p53 and Nrf2 in NT2/D1 cells increased LRWD1 promoter activity while 5-fluorodeoxyuridine decreased it. In conclusion, this study highlights evidence that the methylation status of LRWD1 promoter is associated with LRWD1 expression. Since the expression level of LRWD1 plays an important role in spermatogenesis, the methylation status of LRWD1 may serve as a novel molecular diagnostic or therapeutic approach in male's infertility.

Keywords: LRWD1, DNA methylation, p53, Nrf2

Procedia PDF Downloads 148
935 Liposome Sterile Filtration Fouling: The Impact of Transmembrane Pressure on Performance

Authors: Hercules Argyropoulos, Thomas F. Johnson, Nigel B Jackson, Kalliopi Zourna, Daniel G. Bracewell

Abstract:

Lipid encapsulation has become essential in drug delivery, notably for mRNA vaccines during the COVID-19 pandemic. However, their sterile filtration poses challenges due to the risk of deformation, filter fouling and product loss from adsorption onto the membrane. Choosing the right filtration membrane is crucial to maintain sterility and integrity while minimizing product loss. The objective of this study is to develop a rigorous analytical framework utilizing confocal microscopy and filtration blocking models to elucidate the fouling mechanisms of liposomes as a model system for this class of delivery vehicle during sterile filtration, particularly in response to variations in transmembrane pressure (TMP) during the filtration process. Experiments were conducted using fluorescent Lipoid S100 PC liposomes formulated by micro fluidization and characterized by Multi-Angle Dynamic Light Scattering. Dual-layer PES/PES and PES/PVDF membranes with 0.2 μm pores were used for filtration under constant pressure, cycling from 30 psi to 5 psi and back to 30 psi, with 5, 6, and 5-minute intervals. Cross-sectional membrane samples were prepared by microtome slicing and analyzed with confocal microscopy. Liposome characterization revealed a particle size range of 100-140 nm and an average concentration of 2.93x10¹¹ particles/mL. Goodness-of-fit analysis of flux decline data at varying TMPs identified the intermediate blocking model as most accurate at 30 psi and the cake filtration model at 5 psi. Membrane resistance analysis showed atypical behavior compared to therapeutic proteins, with resistance remaining below 1.38×10¹¹ m⁻¹ at 30 psi, increasing over fourfold at 5 psi, and then decreasing to 1-1.3-fold when pressure was returned to 30 psi. This suggests that increased flow/shear deforms liposomes enabling them to more effectively navigate membrane pores. Confocal microscopy indicated that liposome fouling mainly occurred in the upper parts of the dual-layer membrane.

Keywords: sterile filtration, membrane resistance, microfluidization, confocal microscopy, liposomes, filtration blocking models

Procedia PDF Downloads 23
934 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 255
933 Discovery of New Inhibitors for Colorectal Cancer Treatment

Authors: Kai-Cheng Hsu, Tzu-Ying Sung, Jinn-Moon Yang

Abstract:

Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Although several drugs have been developed to treat colorectal cancer, such as Regorafenib and 5-FU, their efficacy is often limited by the development of drug resistance. Therefore, development of new drugs with new scaffolds is necessary to treat CRC. Here, we used site-moiety maps to identify inhibitors against PIM1, LIMK1, SRC, and mTOR, which are often overexpressed in CRC. A site-moiety map represents physicochemical properties and moiety preferences of a binding site through anchors. An anchor contains three elements: (1) conserved interacting residues of a binding pocket; (2) moiety preference of the binding pocket; and (3) the type (e.g., hydrogen-bonding or van der Waals interactions) of interaction between the moieties and the binding pocket. Then, we performed a structure-based virtual screening of ~260,000 compounds and selected compound candidates with high site-moiety map scores for bioassays. Among these candidates, compound 1 and compound 2 inhibited the growth of CRC cells with IC50 values of <10 μM. The experimental result of enzyme-based assays indicated that compound 1 is a dual inhibitor against PIM1 (IC50 6 μM) and LIMK1(IC50 11 μM). Compound 2 was predicted as a SRC inhibitor and will be further validated. The compounds inhibited different protein targets compared to the current drugs. We believe that the compounds provide a starting point to design new drugs for CRC treatment.

Keywords: colorectal cancer, drug discovery, site-moiety map, virtual screening, PIM1, LIMK1

Procedia PDF Downloads 248
932 Effect of Sweet Potato (Ipomoea batatas) Leaves on Wheat Offal Replacement for Chicks Feed Production

Authors: C. C. Okafor, T. M. Ezeh

Abstract:

The effect of addition of sweet potato leaves in replacement of wheat offal in the production of broiler chicks feed was studied. 72 day-old marshal strain chicks were used and brooded for two weeks with a normal commercial feed in Nigeria called top feed and weighed separately at the end of the two weeks, complete randomized design (CRD) was used. The weighed broiler chicks were randomly allocated to four dietary treatments. Each treatment was replicated to twice with eighteen birds per replicate. The four dietary treatment identified as T1, T2, T3 and T4. T1 served as control diet with 21% crude protein content, while T2 was prepared with Enzyme and in T3 and T4, wheat offal was replaced with sweet potato leaves and in T4 with inclusion of enzyme. Growth performance was studied using the following daily feed intake, daily weight gain and feed efficiency. The result in daily weight gain showed that chicks fed with T2 feed had the highest weight gain (93.75) while chicks fed with T3 had the least weight gain of (34.5 gm). In daily feed intake chicks fed with T4 fed more (53.06 gm) than chicks fed with T2 (51.08 gm). In feed efficiency T3 had the highest value of 30% while the T2 had the least efficiency of 22%. There was no significant difference (P≥ 0.05) in all the three parameter tested. Sweet potato leaves can replace wheat offal in broiler feed production without any adverse effect on the growth performance.

Keywords: broiler, diet, dietary, potato leaves, wheat offal

Procedia PDF Downloads 531
931 Nutritional Composition of Crackers Produced from Blend of Sprouted Pigeon Pea (Cajanus cajan), Unripe Plantain (Musa parasidiaca), and Brewers’ Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit

Authors: Nneka N. Uchegbu, Charles N. Ishiwu

Abstract:

The nutritional composition and hypoglycaemic effect of crackers produced from a blend of sprouted pigeon pea, unripe plantain, and brewers’ spent grain and fed to Alloxan induced diabetic rat was investigated. Crackers were produced from different blends of sprouted pigeon pea, unripe plantain and brewers’ spent grain. The crackers were evaluated for proximate composition, amino acid profile and antinutritional factors. Blood glucose levels of normal and diabetic rats fed with the control sample and different formulations of cracker were measured. The protein content of the samples were significantly different (p < 0.05) from each other with sample A having the lowest value and sample B with the highest value. The values obtained showed that the samples contained most of the amino acids that are found in plant proteins. The levels of antinutritional factor determined were generally low. Administration of the formulated cracker meals led to a significant reduction in the fasting blood glucose level in the diabetic rats. The present study concluded that consumption of crackers produced from this composite flour can be recommended for the diabetics and those who are sceptical about the disease.

Keywords: crackers, diabetics rat, sprouted pigeon pea, unripe plantain and brewers’ spent grain

Procedia PDF Downloads 442