Search results for: Heat and Mass transfer
5482 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.Keywords: nanosensor, HIC, lysozyme, QCM
Procedia PDF Downloads 3485481 Controlling Olive Anthracnose with Antifungal Metabolites from Bacillus Species: A Biological Approach
Authors: Hafiz Husnain Nawaz
Abstract:
Anthracnose disease in olive, caused by the fungal pathogen Colletotrichum acutatum, is considered one of the most critical issues in olive orchards in Pakistan. This disease poses a significant threat as it results in infections that can lead to the complete damage of olive plants, affecting leaves, stems, and fruits in the field. Controlling this disease is particularly challenging due to the absence of an effective fungicide that does not pose risks to farmer health and the environment. To address this challenge, our study aimed to evaluate the antagonistic activity of a biosurfactant produced by the Bacillus subtilis PE-07 strain against the anthracnose-causing agent in olive plants. This strain was selected after screening sixty rhizobacteria strains. Additionally, we assessed the heat stability, pH range, and toxicity of the biosurfactant produced by strain PE-07. Our results revealed that the biosurfactant exhibited maximum antifungal activity against C. acutatum. In vitro studies indicated that the biosurfactant could reduce fungal activity by inhibiting the spore germination of C. acutatum. Furthermore, the biosurfactant demonstrated a wide pH and temperature range, displaying antifungal activity at pH levels ranging from 5 to 10 and a temperature range from room temperature to 110°C. To evaluate the biosurfactant's safety, we conducted toxicity tests on zebra fish (Danio rerio). The results showed that the biosurfactant had minimal harmful effects, even at maximum concentrations. In conclusion, our study confirmed that the biosurfactant produced by B. subtilis exhibited high pH and heat stability with minimal harmful effects. Therefore, it presents a promising alternative to chemical pesticides for effectively controlling olive anthracnose in Pakistan.Keywords: biological control, heat stability and PH range, toxicity, Danio rerio
Procedia PDF Downloads 605480 Flammability of Banana Fibre Reinforced Epoxy/Sodium Bromate Blend: Investigation of Variation in Mechanical Properties
Authors: S. Badrinarayanan, R. Vimal, H. Sivaraman, P. Deepak, R. Vignesh Kumar, A. Ponshanmugakumar
Abstract:
In the present study, the flammability properties of banana fibre reinforced epoxy/ sodium bromate blended composites are studied. Two sets of composite material were prepared, one formed by blending sodium bromate with epoxy matrix and other with neat epoxy matrix. Epoxy resin was blended with various weight fractions of sodium bromate, 4%, 8% and 12%. The composite made with plain epoxy matrix was used as the standard reference material. The mechanical tests, heat deflection tests and flammability tests were carried out on all the composite samples. Flammability test shows the improved flammability properties of the sodium bromated banana-epoxy composite. The modification in flammability properties of the composites by the addition of sodium bromate results in the reduced mechanical properties. The fractured surfaces under various mechanical testing were analysed using morphological analysis done using scanning electron microscope.Keywords: banana fibres, epoxy resin, sodium bromate, flammability test, heat deflection
Procedia PDF Downloads 2975479 Physicochemical Characteristics of Rice Starch Chainat 1 Variety by Physical Modification
Authors: Orose Rugchati, Sarawut Wattanawongpitak
Abstract:
The Chainat 1 variety (CN1) of rice, which generally has high amylose starch, is distributed in the lower part of Northern Thailand. CN1 rice starch can be used in both food and non-food products. In this research, the CN1 rice starch from the wet-milling process was prepared by Pre-Gelatinization (Heat-Moisture Treatments, HMT) under different conditions: percentage of moisture contents (20% and 30%) and duration time in minutes (0, 30, 60, and 90) at a specific temperature 110°C. The physicochemical characteristics of CN1 rice starch modification, such as amylose content, viscosity, swelling, and solubility property, were evaluated and compared with native CN1 rice starch. The results showed that modification CN1 rice starch tends to have some characteristics better than native starch. The appearance color and starch granule of modified CN1 by HMT have more effective characteristics than native starch when increased duration time. The duration time and moisture content are significant factors to the CN1 starch characteristic by HMT. Moreover, physical modification of CN1 starch by HMT can be described as a modified rice starch providing in many applications and the advantage of biodegradability development.Keywords: physicochemical characteristics, physical modification, pre-gelatinization, Heat-Moisture Treatments, rice starch, Chainat 1 variety (CN1)
Procedia PDF Downloads 1555478 On Energy Condition Violation for Shifting Negative Mass Black Holes
Authors: Manuel Urueña Palomo
Abstract:
In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.Keywords: black holes, CPT symmetry, negative mass, time transformation
Procedia PDF Downloads 1495477 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid
Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah
Abstract:
This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.Keywords: methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial
Procedia PDF Downloads 3325476 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine
Authors: N. Hatraf, L. Merabti, Z. Neffah, W. Taane
Abstract:
The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.Keywords: absorption, crystallization, experimental results, lithium bromide solution
Procedia PDF Downloads 3105475 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems
Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion
Abstract:
One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.Keywords: ice accretion, interpolation, mesh deformation, radial basis functions
Procedia PDF Downloads 3135474 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing
Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko
Abstract:
Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components
Procedia PDF Downloads 6085473 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian
Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma
Abstract:
In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental
Procedia PDF Downloads 2095472 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control
Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo
Abstract:
Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.Keywords: leak testing, spacecraft parts, relative error, error control
Procedia PDF Downloads 4565471 Effect of Concurrent Training and Detraining on Insulin Resistance in Obese Children
Authors: Kaveh Azadeh, Saeid Fazelifar
Abstract:
The main purpose of the present study was to examine the effect of 12 weeks (3 days/week) concurrent training followed by 4 weeks detraining on insulin resistance in obese boys without dietary intervention. Methods: 24 obese children boys (body mass index> 28, age= 11- 13year old) voluntarily participated in the study. Biochemical factors, body composition, and functional physical fitness were assessed in three stages [baseline, after 12 week’s combined endurance and resistance training and 4 week’s detraining in the experimental group (n=12); baseline and after 12 weeks in control group (n=12)]. Results: Indepented - Sample T test revealed that in experimental group after 12weeks trainings the insulin resistance, and body fat mass were significantly declined, whereas endurance and strength of abdominal muscles significantly increased compared to control group (p<0/05). One-way ANOVA for three different periods showed that insulin resistance, body fat mass, strength of abdominal muscles after 12week training was significantly improved in the experimental group compared with the baseline. Following 4weeks detraining insulin resistance again significantly increased (p<0/05). After detraining disturbances of physiological adaptation in obese children have more rapid course in comparison with those anthropological and functional indices. Conclusion: Results showed that participation in the regular concurrent trainings provides a decrease of insulin resistance in obese children. It may serve as a strategy in treatment of obesity and management on insulin resistance, as well as to increase endurance and strength muscles in obese children. Adaptations resulting from regular exercises following detraining are reversible.Keywords: endurance and resistance trainings, detraining, insulin resistance, obese children
Procedia PDF Downloads 1955470 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube
Authors: M. Guen
Abstract:
A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence
Procedia PDF Downloads 2495469 Knowledge Co-Production on Future Climate-Change-Induced Mass-Movement Risks in Alpine Regions
Authors: Elisabeth Maidl
Abstract:
The interdependence of climate change and natural hazard goes along with large uncertainties regarding future risks. Regional stakeholders, experts in natural hazards management and scientists have specific knowledge, resp. mental models on such risks. This diversity of views makes it difficult to find common and broadly accepted prevention measures. If the specific knowledge of these types of actors is shared in an interactive knowledge production process, this enables a broader and common understanding of complex risks and allows to agree on long-term solution strategies. Previous studies on mental models confirm that actors with specific vulnerabilities perceive different aspects of a topic and accordingly prefer different measures. In bringing these perspectives together, there is the potential to reduce uncertainty and to close blind spots in solution finding. However, studies that examine the mental models of regional actors on future concrete mass movement risks are lacking so far. The project tests and evaluates the feasibility of knowledge co-creation for the anticipatory prevention of climate change-induced mass movement risks in the Alps. As a key element, mental models of the three included groups of actors are compared. Being integrated into the research program Climate Change Impacts on Alpine Mass Movements (CCAMM2), this project is carried out in two Swiss mountain regions. The project is structured in four phases: 1) the preparatory phase, in which the participants are identified, 2) the baseline phase, in which qualitative interviews and a quantitative pre-survey are conducted with actors 3) the knowledge-co-creation phase, in which actors have a moderated exchange meeting, and a participatory modelling workshop on specific risks in the region, and 4) finally a public information event. Results show that participants' mental models are based on the place of origin, profession, believes, values, which results in narratives on climate change and hazard risks. Further, the more intensively participants interact with each other, the more likely is that they change their views. This provides empirical evidence on how changes in opinions and mindsets can be induced and fostered.Keywords: climate change, knowledge-co-creation, participatory process, natural hazard risks
Procedia PDF Downloads 695468 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes
Authors: Peng Zhang, Cai Liang
Abstract:
The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.Keywords: plastic waste, recycling, hydrogen, microwave
Procedia PDF Downloads 715467 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents
Authors: Swati Bajpai, S. P. K Jena
Abstract:
Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.Keywords: adolescents, body mass index, neurocognition, obesity
Procedia PDF Downloads 4875466 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation
Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin
Abstract:
Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties
Procedia PDF Downloads 1195465 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method
Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez
Abstract:
Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.Keywords: ferrites, heating capability, hemolysis, nanoparticles, sol-gel
Procedia PDF Downloads 3425464 Transfer of Information Heritage between Algerian Veterinarians and Breeders: Assessment of Information and Communication Technology Using Mobile Phone
Authors: R. Bernaoui, P. Ohly
Abstract:
Our research shows the use of the mobile phone that consolidates the relationship between veterinarians, and that between breeders and veterinarians. On the other hand it asserts that the tool in question is a means of economic development. The results of our survey reveal a positive return to the veterinary community, which shows that the mobile phone has become an effective means of sustainable development through the transfer of a rapid and punctual information inheritance via social networks; including many Internet applications. Our results show that almost all veterinarians use the mobile phone for interprofessional communication. We therefore believe that the use of the mobile phone by livestock operators has greatly improved the working conditions, just as the use of this tool contributes to a better management of the exploitation as long as it allows limit travel but also save time. These results show that we are witnessing a growth in the use of mobile telephony technologies that impact is as much in terms of sustainable development. Allowing access to information, especially technical information, the mobile phone, and Information and Communication of Technology (ICT) in general, give livestock sector players not only security, by limiting losses, but also an efficiency that allows them a better production and productivity.Keywords: algeria, breeder-veterinarian, digital heritage, networking
Procedia PDF Downloads 1215463 Anti-Phospholipid Antibody Syndrome Presenting with Seizure, Stroke and Atrial Mass: A Case Report
Authors: Rajish Shil, Amal Alduhoori, Vipin Thomachan, Jamal Teir, Radhakrishnan Renganathan
Abstract:
Background: Antiphospholipid antibody syndrome (APS) has a broad spectrum of thrombotic and non-thrombotic clinical manifestations. We present a case of APS presenting with seizure, stroke, and atrial mass. Case Description: A 38-year-old male presented with headache of 10 days duration and tonic-clonic seizure. The neurological examination was normal. Magnetic resonance imaging of brain showed small acute right cerebellar infarct. Magnetic resonance angiography of brain and neck showed a focal narrowing in the origin of the internal carotid artery bilaterally. Electroencephalogram was normal. He was started on aspirin, atorvastatin, and carbamazepine. Transthoracic and trans-esophageal echocardiography showed a pedunculated and lobular atrial mass, measuring 1 X 1.5 cm, which was freely mobile across mitral valve opening across the left ventricular inflow. Autoimmune screening showed positive Antiphospholipid antibodies in high titer (Cardiolipin IgG > 120 units/ml, B2 glycoprotein IgG 90 units/mL). Anti-nuclear antibody was negative. Erythrocyte sedimentation rate and C-reactive protein levels were normal. Platelet count was low (111 x 109/L). The patient underwent successful surgical removal of the mass, which looked like a thrombotic clot, and Histopathological analysis confirmed it as a fibrinous clot, with no evidence of tumor cells. The patient was started on full anticoagulation treatment and was followed up regularly in the clinic, where our patient did not have any further complications from the disease. Discussion: Our patient was diagnosed to have APS based on the features of high positive anticardiolipin antibody IgG and B2 glycoprotein IgG levels, Stroke, thrombocytopenia, and abnormal echo findings. Thrombotic vegetation can mimic an atrial myxoma on echo. Conclusion: APS can present with neurological and cardiac manifestations, and therefore a high index of suspicion is necessary for a diagnosis of the disease as it can affect both short and long term treatment plans and prognosis. Therefore, in patients presenting with neurological symptoms like seizures, weakness and radiological diagnosis of stroke in a young patient, where atrial masses could be thought to be the cause of stroke, they should be screened for any concomitant findings of thrombocytopenia and/or activated partial thromboplastin time prolongation, which should raise the suspicion of vasculitis, specifically APS to be the primary cause of the clinical presentation.Keywords: antiphospholipid syndrome, seizures, atrial mass, stroke
Procedia PDF Downloads 1135462 A Service-Learning Experience in the Subject of Adult Nursing
Authors: Eva de Mingo-Fernández, Lourdes Rubio Rico, Carmen Ortega-Segura, Montserrat Querol-García, Raúl González-Jauregui
Abstract:
Today, one of the great challenges that the university faces is to get closer to society and transfer knowledge. The competency-based training approach favours a continuous interaction between practice and theory, which is why it is essential to establish real experiences with reflection and debate and to contrast them with personal and professional knowledge. Service-learning (SL) consists of an integration of academic learning with service in the community, which enables teachers to transfer knowledge with social value and students to be trained on the basis of experience of real needs and problems with the aim of solving them. SLE combines research, teaching, and social value knowledge transfer with the real social needs and problems of a community. Goal: The objective of this study was to design, implement, and evaluate a service-learning program in the subject of adult nursing for second-year nursing students. Methodology: After establishing collaboration with eight associations of people with different pathologies, the students were divided into eight groups, and each group was assigned an association. The groups were made up of 10-12 students. The associations willing to participate were for the following conditions: diabetes, multiple sclerosis, cancer, inflammatory bowel disease, fibromyalgia, heart, lung, and kidney diseases. The methodological design consisting of 5 activities was then applied. Three activities address personal and individual reflections, where the student initially describes what they think it is like to live with a certain disease. They then express their reflections resulting from an interview conducted by peers, in person or online, with a person living with this particular condition, and after sharing the results of their reflections with the rest of the group, they make an oral presentation in which they present their findings to the other students. This is followed by a service task in which the students collaborate in different activities of the association, and finally, a third individual reflection is carried out in which the students express their experience of collaboration. The evaluation of this activity is carried out by means of a rubric for both the reflections and the presentation. It should be noted that the oral presentation is evaluated both by the rest of the classmates and by the teachers. Results: The evaluation of the activity, given by the students, is 7.80/10, commenting that the experience is positive and brings them closer to the reality of the people and the area.Keywords: academic learning integration, knowledge transfer, service-learning, teaching methodology
Procedia PDF Downloads 675461 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition
Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg
Abstract:
This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties
Procedia PDF Downloads 2185460 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section
Authors: Mohammed Alrajhi
Abstract:
Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.Keywords: cross-section, neutron, photon, coefficient, mathematics
Procedia PDF Downloads 3715459 Problems and Solutions in the Application of ICP-MS for Analysis of Trace Elements in Various Samples
Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Áron Soós, Xénia Vágó, Dávid Andrási
Abstract:
In agriculture for analysis of elements in different food and food raw materials, moreover environmental samples generally flame atomic absorption spectrometers (FAAS), graphite furnace atomic absorption spectrometers (GF-AAS), inductively coupled plasma optical emission spectrometers (ICP-OES) and inductively coupled plasma mass spectrometers (ICP-MS) are routinely applied. An inductively coupled plasma mass spectrometer (ICP-MS) is capable for analysis of 70-80 elements in multielemental mode, from 1-5 cm3 volume of a sample, moreover the detection limits of elements are in µg/kg-ng/kg (ppb-ppt) concentration range. All the analytical instruments have different physical and chemical interfering effects analysing the above types of samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays there is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better (smaller) detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium, arsenic, germanium, vanadium and chromium. To elaborate an analytical method for trace elements with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) Physical interferences; 2) Spectral interferences (elemental and molecular isobaric); 3) Effect of easily ionisable elements; 4) Memory interferences. Analysing food and food raw materials, moreover environmental samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food and food raw materials, moreover environmental samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of the applied elements. So finally we could find “opportunities” to decrease or eliminate the error of the analyses of applied elements (Cr, Co, Ni, Cu, Zn, Ge, As, Se, Mo, Cd, Sn, Sb, Te, Hg, Pb, Bi). To analyse these elements in the above samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of the above elements, which can be corrected using different internal standards.Keywords: elements, environmental and food samples, ICP-MS, interference effects
Procedia PDF Downloads 5045458 Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application
Authors: M. Kaouane, A. Boukhelifa, A. Cheriti
Abstract:
In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer.Keywords: Buck-Boost converter, switch, photovoltaic, PWM, power, energy transfer
Procedia PDF Downloads 9055457 Analgesic and Antipyretic Activity of Thunbergia laurifolia Lindl. Extract
Authors: Nantawan Soonklang, Linda Chularojanamontri, Urarat Nanna
Abstract:
Ethnopharmacological relevance: Thunbergia laurifolia Lindl. belongs to the family Acanthaceae commonly known as Rang jeud in Thailand. This plant is traditionally used in Thailand for centuries as an antidote for several poisons and drug overdose. Aim of the study: This research aimed to study the analgesic and antipyretic activities of T. laurifolia water extract by using animal models. Materials and Methods: The analgesic activity was studied using 2 methods of pain induction including acetic acid and heat induced pain. And the antipyretic activity study was performed by yeast-induced hyperthermia. Results: The results showed that the administration of T. laurifolia extract possessed analgesic activity by reducing acetic acid-induced writhing response and heat-induced pain as well as showed antipyretic activity by decreasing body temperature of hyperthermic rats induced by brewer’s yeast. Conclusion: The study indicates that the T. laurifolia extract possesses analgesic and antipyretic activities in animals.Keywords: Thunbergia laurifolia extract, analgesic activity, antipyretic activity, hyperthermia
Procedia PDF Downloads 3855456 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed
Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan
Abstract:
Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling
Procedia PDF Downloads 3825455 Relocation of the Air Quality Monitoring Stations Network for Aburrá Valley Based on Local Climatic Zones
Authors: Carmen E. Zapata, José F. Jiménez, Mauricio Ramiréz, Natalia A. Cano
Abstract:
The majority of the urban areas in Latin America face the challenges associated with city planning and development problems, attributed to human, technical, and economical factors; therefore, we cannot ignore the issues related to climate change because the city modifies the natural landscape in a significant way transforming the radiation balance and heat content in the urbanized areas. These modifications provoke changes in the temperature distribution known as “the heat island effect”. According to this phenomenon, we have the need to conceive the urban planning based on climatological patterns that will assure its sustainable functioning, including the particularities of the climate variability. In the present study, it is identified the Local Climate Zones (LCZ) in the Metropolitan Area of the Aburrá Valley (Colombia) with the objective of relocate the air quality monitoring stations as a partial solution to the problem of how to measure representative air quality levels in a city for a local scale, but with instruments that measure in the microscale.Keywords: air quality, monitoring, local climatic zones, valley, monitoring stations
Procedia PDF Downloads 2725454 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment
Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi
Abstract:
Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness
Procedia PDF Downloads 5105453 Reliability Verification of the Performance Evaluation of Multiphase Pump
Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi
Abstract:
The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification
Procedia PDF Downloads 434