Search results for: edge computing module
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2491

Search results for: edge computing module

211 Hydrological Analysis for Urban Water Management

Authors: Ranjit Kumar Sahu, Ramakar Jha

Abstract:

Urban Water Management is the practice of managing freshwater, waste water, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Application of SWMM (Storm Water Management Model) and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and waste water treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, waste water, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management.

Keywords: Storm Water Management Model (SWMM), uncertainty analysis, urban sprawl, land use change

Procedia PDF Downloads 425
210 Foreseen the Future: Human Factors Integration in European Horizon Projects

Authors: José Manuel Palma, Paula Pereira, Margarida Tomás

Abstract:

Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).

Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0

Procedia PDF Downloads 65
209 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries

Authors: Behzad Babaei, B. Gangadhara Prusty

Abstract:

The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.

Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress

Procedia PDF Downloads 102
208 Monitoring of Indoor Air Quality in Museums

Authors: Olympia Nisiforou

Abstract:

The cultural heritage of each country represents a unique and irreplaceable witness of the past. Nevertheless, on many occasions, such heritage is extremely vulnerable to natural disasters and reckless behaviors. Even if such exhibits are now located in Museums, they still receive insufficient protection due to improper environmental conditions. These external changes can negatively affect the conditions of the exhibits and contribute to inefficient maintenance in time. Hence, it is imperative to develop an innovative, low-cost system, to monitor indoor air quality systematically, since conventional methods are quite expensive and time-consuming. The present study gives an insight into the indoor air quality of the National Byzantine Museum of Cyprus. In particular, systematic measurements of particulate matter, bio-aerosols, the concentration of targeted chemical pollutants (including Volatile organic compounds (VOCs), temperature, relative humidity, and lighting conditions as well as microbial counts have been performed using conventional techniques. Measurements showed that most of the monitored physiochemical parameters did not vary significantly within the various sampling locations. Seasonal fluctuations of ammonia were observed, showing higher concentrations in the summer and lower in winter. It was found that the outdoor environment does not significantly affect indoor air quality in terms of VOC and Nitrogen oxides (NOX). A cutting-edge portable Gas Chromatography-Mass Spectrometry (GC-MS) system (TORION T-9) was used to identify and measure the concentrations of specific Volatile and Semi-volatile Organic Compounds. A large number of different VOCs and SVOCs found such as Benzene, Toluene, Xylene, Ethanol, Hexadecane, and Acetic acid, as well as some more complex compounds such as 3-ethyl-2,4-dimethyl-Isopropyl alcohol, 4,4'-biphenylene-bis-(3-aminobenzoate) and trifluoro-2,2-dimethylpropyl ester. Apart from the permanent indoor/outdoor sources (i.e., wooden frames, painted exhibits, carpets, ventilation system and outdoor air) of the above organic compounds, the concentration of some of them within the areas of the museum were found to increase when large groups of visitors were simultaneously present at a specific place within the museum. The high presence of Particulate Matter (PM), fungi and bacteria were found in the museum’s areas where carpets were present but low colonial counts were found in rooms where artworks are exhibited. Measurements mentioned above were used to validate an innovative low-cost air-quality monitoring system that has been developed within the present work. The developed system is able to monitor the average concentrations (on a bidaily basis) of several pollutants and presents several innovative features, including the prompt alerting in case of increased average concentrations of monitored pollutants, i.e., exceeding the limit values defined by the user.

Keywords: exibitions, indoor air quality , VOCs, pollution

Procedia PDF Downloads 123
207 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 21
206 Sustainable Happiness of Thai People: Monitoring the Thai Happiness Index

Authors: Kalayanee Senasu

Abstract:

This research investigates the influences of different factors on the happiness of Thai people, including both general factors and sustainable ones. Additionally, this study also monitors Thai people’s happiness via Thai Happiness Index developed in 2017. Besides reflecting happiness level of Thai people, this index also identifies related important issues. The data were collected by both secondary related data and primary survey data collected by interviewed questionnaires. The research data were from stratified multi-stage sampling in region, province, district, and enumeration area, and simple random sampling in each enumeration area. The research data cover 20 provinces, including Bangkok and 4-5 provinces in each region of the North, Northeastern, Central, and South. There were 4,960 usable respondents who were at least 15 years old. Statistical analyses included both descriptive and inferential statistics, including hierarchical regression and one-way ANOVA. The Alkire and Foster method was adopted to develop and calculate the Thai happiness index. The results reveal that the quality of household economy plays the most important role in predicting happiness. The results also indicate that quality of family, quality of health, and effectiveness of public administration in the provincial level have positive effects on happiness at about similar levels. For the socio-economic factors, the results reveal that age, education level, and household revenue have significant effects on happiness. For computing Thai happiness index (THaI), the result reveals the 2018 THaI value is 0.556. When people are divided into four groups depending upon their degree of happiness, it is found that a total of 21.1% of population are happy, with 6.0% called deeply happy and 15.1% called extensively happy. A total of 78.9% of population are not-yet-happy, with 31.8% called narrowly happy, and 47.1% called unhappy. A group of happy population reflects the happiness index THaI valued of 0.789, which is much higher than the THaI valued of 0.494 of the not-yet-happy population. Overall Thai people have higher happiness compared to 2017 when the happiness index was 0.506.

Keywords: happiness, quality of life, sustainability, Thai Happiness Index

Procedia PDF Downloads 168
205 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 146
204 Carbon Sequestration Modeling in the Implementation of REDD+ Programmes in Nigeria

Authors: Oluwafemi Samuel Oyamakin

Abstract:

The forest in Nigeria is currently estimated to extend to around 9.6 million hectares, but used to expand over central and southern Nigeria decades ago. The forest estate is shrinking due to long-term human exploitation for agricultural development, fuel wood demand, uncontrolled forest harvesting and urbanization, amongst other factors, compounded by population growth in rural areas. Nigeria has lost more than 50% of its forest cover since 1990 and currently less than 10% of the country is forested. The current deforestation rate is estimated at 3.7%, which is one of the highest in the world. Reducing Emissions from Deforestation and forest Degradation plus conservation, sustainable management of forests and enhancement of forest carbon stocks constituted what is referred to as REDD+. This study evaluated some of the existing way of computing carbon stocks using eight indigenous tree species like Mansonia, Shorea, Bombax, Terminalia superba, Khaya grandifolia, Khaya senegalenses, Pines and Gmelina arborea. While these components are the essential elements of REDD+ programme, they can be brought under a broader framework of systems analysis designed to arrive at optimal solutions for future predictions through statistical distribution pattern of carbon sequestrated by various species of tree. Available data on height and diameter of trees in Ibadan were studied and their respective potentials of carbon sequestration level were assessed and subjected to tests so as to determine the best statistical distribution that would describe the carbon sequestration pattern of trees. The result of this study suggests a reasonable statistical distribution for carbons sequestered in simulation studies and hence, allow planners and government in determining resources forecast for sustainable development especially where experiments with real-life systems are infeasible. Sustainable management of forest can then be achieved by projecting future condition of forests under different management regimes thereby supporting conservation and REDD+ programmes in Nigeria.

Keywords: REDD+, carbon, climate change, height and diameter

Procedia PDF Downloads 167
203 Progress Towards Optimizing and Standardizing Fiducial Placement Geometry in Prostate, Renal, and Pancreatic Cancer

Authors: Shiva Naidoo, Kristena Yossef, Grimm Jimm, Mirza Wasique, Eric Kemmerer, Joshua Obuch, Anand Mahadevan

Abstract:

Background: Fiducial markers effectively enhance tumor target visibility prior to Stereotactic Body Radiation Therapy or Proton therapy. To streamline clinical practice, fiducial placement guidelines from a robotic radiosurgery vendor were examined with the goals of optimizing and standardizing feasible geometries for each treatment indication. Clinical examples of prostate, renal, and pancreatic cases are presented. Methods: Vendor guidelines (Accuray, Sunnyvale, Ca) suggest implantation of 4–6 fiducials at least 20 mm apart, with at least a 15-degree angular difference between fiducials, within 50 mm or less from the target centroid, to ensure that any potential fiducial motion (e.g., from respiration or abdominal/pelvic pressures) will mimic target motion. Also recommended is that all fiducials can be seen in 45-degree oblique views with no overlap to coincide with the robotic radiosurgery imaging planes. For the prostate, a standardized geometry that meets all these objectives is a 2 cm-by-2 cm square in the coronal plane. The transperineal implant of two pairs of preloaded tandem fiducials makes the 2 cm-by-2 cm square geometry clinically feasible. This technique may be applied for renal cancer, except repositioned in a sagittal plane, with the retroperitoneal placement of the fiducials into the tumor. Pancreatic fiducial placement via endoscopic ultrasound (EUS) is technically more challenging, as fiducial placement is operator-dependent, and lesion access may be limited by adjacent vasculature, tumor location, or restricted mobility of the EUS probe in the duodenum. Fluoroscopically assisted fiducial placement during EUS can help ensure fiducial markers are deployed with optimal geometry and visualization. Results: Among the first 22 fiducial cases on a newly installed robotic radiosurgery system, live x-ray images for all nine prostatic cases had excellent fiducial visualization at the treatment console. Renal and pancreatic fiducials were not as clearly visible due to difficult target access and smaller caliber insertion needle/fiducial usage. The geometry of the first prostate case was used to ensure accurate geometric marker placement for the remaining 8 cases. Initially, some of the renal and pancreatic fiducials were closer than the 20 mm recommendation, and interactive feedback with the proceduralists led to subsequent fiducials being too far to the edge of the tumor. Further feedback and discussion of all cases are being used to help guide standardized geometries and achieve ideal fiducial placement. Conclusion: The ideal tradeoffs of fiducial visibility versus the thinnest possible gauge needle to avoid complications needs to be systematically optimized among all patients, particularly in regards to body habitus. Multidisciplinary collaboration among proceduralists and radiation oncologists can lead to improved outcomes.

Keywords: fiducial, prostate cancer, renal cancer, pancreatic cancer, radiotherapy

Procedia PDF Downloads 93
202 Effect of Energy Management Practices on Sustaining Competitive Advantage among Manufacturing Firms: A Case of Selected Manufacturers in Nairobi, Kenya

Authors: Henry Kiptum Yatich, Ronald Chepkilot, Aquilars Mutuku Kalio

Abstract:

Studies on energy management have focused on environmental conservation, reduction in production and operation expenses. However, transferring gains of energy management practices to competitive advantage is importance to manufacturers in Kenya. Success in managing competitive advantage arises out of a firm’s ability in identifying and implementing actions that can give the company an edge over its rivals. Manufacturing firms in Kenya are the highest consumers of both electricity and petroleum products. In this regard, the study posits that transfer of the gains of energy management practices to competitive advantage is imperative. The study was carried in Nairobi and its environs, which hosts the largest number of manufacturers. The study objectives were; to determine the level of implementing energy management regulations on sustaining competitive advantage, to determine the level of implementing company energy management policy on competitive advantage, to examine the level of implementing energy efficient technology on sustaining competitive advantage, and to assess the percentage energy expenditure on sustaining competitive advantage among manufacturing firms. The study adopted a survey research design, with a study population of 145,987. A sample of 384 respondents was selected randomly from 21 proportionately selected firms. Structured questionnaires were used to collect data. Data analysis was done using descriptive statistics (mean and standard deviations) and inferential statistics (correlation, regression, and T-test). Data is presented using tables and diagrams. The study found that Energy Management Regulations, Company Energy Management Policies, and Energy Expenses are significant predictors of Competitive Advantage (CA). However, Energy Efficient Technology as a component of Energy Management Practices did not have a significant relationship with Competitive Advantage. The study revealed that the level of awareness in the sector stood at 49.3%. Energy Expenses in the sector stood at an average of 10.53% of the firm’s total revenue. The study showed that gains from energy efficiency practices can be transferred to competitive strategies so as to improve firm competitiveness. The study recommends that manufacturing firms should consider energy management practices as part of its strategic agenda in assessing and reviewing their energy management practices as possible strategies for sustaining competitiveness. The government agencies such as Energy Regulatory Commission, the Ministry of Energy and Petroleum, and Kenya Association of Manufacturers should enforce the energy management regulations 2012, and with enhanced stakeholder involvement and sensitization so as promote sustenance of firm competitiveness. Government support in providing incentives and rebates for acquisition of energy efficient technologies should be pursued. From the study limitation, future experimental and longitudinal studies need to be carried out. It should be noted that energy management practices yield enormous benefits to all stakeholders and that the practice should not be considered a competitive tool but rather as a universal practice.

Keywords: energy, efficiency, management, guidelines, policy, technology, competitive advantage

Procedia PDF Downloads 384
201 Seismotectonics and Seismology the North of Algeria

Authors: Djeddi Mabrouk

Abstract:

The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).

Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth

Procedia PDF Downloads 407
200 Delving into Market-Driving Behavior: A Conceptual Roadmap to Delineating Its Key Antecedents and Outcomes

Authors: Konstantinos Kottikas, Vlasis Stathakopoulos, Ioannis G. Theodorakis, Efthymia Kottika

Abstract:

Theorists have argued that Market Orientation is comprised of two facets, namely the Market Driven and the Market Driving components. The present theoretical paper centers on the latter, which to date has been notably under-investigated. The term Market Driving (MD) pertains to influencing the structure of the market, or the behavior of market players in a direction that enhances the competitive edge of the firm. Presently, the main objectives of the paper are the specification of key antecedents and outcomes of Market Driving behavior. Market Driving firms behave proactively, by leading their customers and changing the rules of the game rather than by responding passively to them. Leading scholars were the first to conceptually conceive the notion, followed by some qualitative studies and a limited number of quantitative publications. However, recently, academicians noted that research on the topic remains limited, expressing a strong necessity for further insights. Concerning the key antecedents, top management’s Transformational Leadership (i.e. the form of leadership which influences organizational members by aligning their values, goals and aspirations to facilitate value-consistent behaviors) is one of the key drivers of MD behavior. Moreover, scholars have linked the MD concept with Entrepreneurship. Finally, the role that Employee’s Creativity plays in the development of MD behavior has been theoretically exemplified by a stream of literature. With respect to the key outcomes, it has been demonstrated that MD Behavior positively triggers firm Performance, while theorists argue that it empowers the Competitive Advantage of the firm. Likewise, researchers explicate that MD Behavior produces Radical Innovation. In order to test the robustness of the proposed theoretical framework, a combination of qualitative and quantitative methods is proposed. In particular, the conduction of in-depth interviews with distinguished executives and academicians, accompanied with a large scale quantitative survey will be employed, in order to triangulate the empirical findings. Given that it triggers overall firm’s success, the MD concept is of high importance to managers. Managers can become aware that passively reacting to market conditions is no longer sufficient. On the contrary, behaving proactively, leading the market, and shaping its status quo are new innovative approaches that lead to a paramount competitive posture and Innovation outcomes. This study also exemplifies that managers can foster MD Behavior through Transformational Leadership, Entrepreneurship and recruitment of Creative Employees. To date, the majority of the publications on Market Orientation is unilaterally directed towards the responsive (i.e. the Market Driven) component. The present paper further builds on scholars’ exhortations, and investigates the Market Driving facet, ultimately aspiring to conceptually integrate the somehow fragmented scientific findings, in a holistic framework.

Keywords: entrepreneurial orientation, market driving behavior, market orientation

Procedia PDF Downloads 384
199 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion

Authors: Hantian Wu, Bo Huang, Yuan Zeng

Abstract:

Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.

Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management

Procedia PDF Downloads 125
198 Insulin Resistance in Early Postmenopausal Women Can Be Attenuated by Regular Practice of 12 Weeks of Yoga Therapy

Authors: Praveena Sinha

Abstract:

Context: Diabetes is a global public health burden, particularly affecting postmenopausal women. Insulin resistance (IR) is prevalent in this population, and it is associated with an increased risk of developing type 2 diabetes. Yoga therapy is gaining attention as a complementary intervention for diabetes due to its potential to address stress psychophysiology. This study focuses on the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Research Aim: The aim of this research is to investigate the effect of a 3-month long yoga practice on insulin resistance in early postmenopausal women. Methodology: The study conducted a prospective longitudinal design with 67 women within five years of menopause. Participants were divided into two groups based on their willingness to join yoga. The Yoga group (n = 37) received routine gynecological management along with an integrated yoga module, while the Non-Yoga group (n = 30) received only routine management. Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) method before and after the intervention. Statistical analysis was performed using GraphPad Prism Version 5 software, with statistical significance set at P < 0.05. Findings: The results indicate a significant decrease in serum fasting insulin levels and HOMA-IR measurements in the Yoga group, although the decrease did not reach statistical significance. In contrast, the Non-Yoga group showed a significant rise in serum fasting insulin levels and HOMA-IR measurements after 3 months, suggesting a detrimental effect on insulin resistance in these postmenopausal women. Theoretical Importance: This study provides evidence that a 12-week yoga practice can attenuate the increase in insulin resistance in early postmenopausal women. It highlights the potential of yoga as a preventive measure against the early onset of insulin resistance and the development of type 2 diabetes mellitus. Regular yoga practice can be a valuable tool in addressing hormonal imbalances associated with early postmenopause, leading to a decrease in morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in this population. Data Collection and Analysis Procedures: Data collection involved measuring serum fasting insulin levels and calculating HOMA-IR. Statistical analysis was performed using GraphPad Prism Version 5 software, and mean values with standard error of the mean were reported. The significance level was set at P < 0.05. Question Addressed: The study aimed to address whether a 3-month long yoga practice could attenuate insulin resistance in early postmenopausal women. Conclusion: The research findings support the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Regular yoga practice has the potential to prevent the early onset of insulin resistance and the development of type 2 diabetes mellitus in this population. By addressing the hormonal imbalances associated with early post menopause, yoga could significantly decrease morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in these subjects.

Keywords: post menopause, insulin resistance, HOMA-IR, yoga, type 2 diabetes mellitus

Procedia PDF Downloads 68
197 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 61
196 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy

Authors: Mathula Thangarajh

Abstract:

Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.

Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene

Procedia PDF Downloads 99
195 Cilubaba: An Agriculture-Based Education Tool through Congklak Traditional Game as an Introduction of Home Garden for Children in Cibanteng, Bogor

Authors: Yoni Elviandri, Vivi Fitriyanti, Agung Surya Wijaya, Suryani Humayyah, Muhammad Alif Azizi

Abstract:

The massive development of computing power and internet access nowadays is marked by audiovisual games and computers which are known as electronic games, one of the examples is online games. This kind of game can be found everywhere in Indonesia, both in the cities and even the villages. In the present time, online games are becoming a popular games in various layers of the community, one of them does happen to elementary school students. As the online games spread over, the traditional games gradually fade away and even thought as an old-fashioned game. Contrary, traditional games actually have the better and higher educational values such as patience, honesty, integrity and togetherness value which cannot be found in online games which are more to individualist. A brand new set of education tools is necessary to provide a convenience, safe and fun place for children to play around but still contains educational values. One interesting example goes to Cilulaba is an agricultural-based playground. It is a good place for children to play and learn as it was planned to entertain children to play around as well as introducing agriculture to them. One of the games is a 1990’s well-known traditional game which its name is Congklak. Congklak is an agricultural-based traditional game and it also introduces the home garden to the children. Some of the Cilulaba’s aims are to protect the existence of nation’s cultural inheritance through Congklak traditional game, as a tool to introduce the agriculture to the children through the methods of Congklak traditional game and giving explanation related to the advantages of a “healthy home garden” to the children. The expected output from this place is to deliver a good understanding about agriculture to the children and make them begin to love it to make an aesthetic home garden and enhance the optimalisation usage of home garden that will support the availability of various edible plants in productive and health households. The proposed method in this Student Creative Program in Society Service is Participatory Rural Appraisal (PRA) method.

Keywords: Cilubaba, Congklak, traditional game, agricultural-based playground

Procedia PDF Downloads 441
194 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 157
193 The Benefits of Using Transformative Inclusion Practices and Action Research in Teaching Development and Active Participation of Roma Students in the Kindergarten

Authors: Beazidou Eleftheria

Abstract:

Roma children face discrimination in schools where they are the minority. On the other hand, teachers do not identify the specific needs of Roma students for educational and social inclusion and generally use a very restricted repertoire of insufficient strategies for helping them. Modern classrooms can and should look different. Therefore, engaging in transformational learning with young children is a deliberate choice. Transformation implies a different way of thinking and acting. This requires new knowledge that incorporates multiple perspectives and actions in order to generate experiences for further learning. In this way, we build knowledge based on empirical examples, and we share what works efficiently. The present research aims at assisting the participating teachers to improve their teaching inclusive practice, thus ultimately benefiting their students. To increase the impact of transformative efforts with a ‘new’ teaching approach, we implemented a classroom-based action research program for over six months in five kindergarten classrooms with Roma and non-Roma students. More specifically, we explore a) information about participants’ experience of the program and b) if the program is successful in helping participants to change their teaching practice. Action research is, by definition, a form of inquiry that is intended to have both action and research outcomes. The action research process that we followed included five phases: 1. Defining the problem: As teachers said, the Roma students are often the most excluded group in schools (Low social interaction and participation in classroom activities) 2. Developing a plan to address the problem: We decided to address the problem by improving/transforming the inclusive practices that teachers implemented in their classrooms. 3. Acting: implementing the plan: We incorporated new activities for all students with the goals: a) All students being passionate about their learning, b) Teachers must investigate issues in the educational context that are personal and meaningful to children's growth, c) Establishment of a new module for values and skills for all students, d) Raising awareness in culture of Roma, e) Teaching students to reflect. 4. Observing: We explore the potential for transformation in the action research program that involves observations of students’ participation in classroom activities and peer interaction. – thus, generated evidence from data. 5. Reflecting and acting: After analyzing and evaluating the outcomes from data and considering the obstacles during the program’s implementation, we established new goals for the next steps of the program. These are centered in: a) the literacy skills of Roma students and b) the transformation of teacher’s perceptions and believes, which have a powerful impact on their willingness to adopt new teaching strategies. The final evaluation of the program showed a significant achievement of the transformative goals, which were related to the active participation of the Roma students in classroom activities and peer interaction, while the activities which were related to literacy skills did not have the expected results. In conclusion, children were equipped with relevant knowledge and skills to raise their potential and contribute to wider societal development as well as teachers improved their teaching inclusive practice.

Keywords: action research, inclusive practices, kindergarten, transformation

Procedia PDF Downloads 82
192 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products

Authors: Maciej Jedrzejczyk, Karolina Marzantowicz

Abstract:

Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.

Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids

Procedia PDF Downloads 300
191 Challenging Role of Talent Management, Career Development and Compensation Management toward Employee Retention and Organizational Performance with Mediating Effect of Employee Motivation in Service Sector of Pakistan

Authors: Muhammad Younas, Sidra Sawati, M. Razzaq Athar

Abstract:

Organizational development history reveals that it has ever been a challenge to identify and fathom the role of talent management, career development and compensation management towards employees’ retention and organizational performance. Organizations strive hard to measure the impact of all those factors which affect employee retention and organizational performance. Researchers have worked in great deal in order to know the relationship of independent variables i.e. Talent Management, Career Development and Compensation Management on dependent variables i.e. Employee Retention and Organizational Performance. Employees adorned with latest skills with long lasting loyalty play a significant role towards successful achievement of short term as well as long term goals of the organizations. Retention of valuable and resourceful employees for a longer time is equally essential for meeting the set goals. The organizations which spend reasonable chunk of their resources for taking such measures that help to retain their employees through talent management and satisfactory career development always enjoy a competitive edge over their competitors. Human resource is regarded as one of the most precious and difficult resource to management. It has its own needs and requirement. It becomes an easy prey to monotony when lacks career development. Wants and aspirations of this resource are seldom met completely but can be managed through career development and compensation management. In this era of competition, organizations have to take viable steps to management their resources especially human resource. Top management and Managers keep on working for an amenable solution in order to address the challenges relating career development and compensation management as their ultimate goal is to ensure the organizational performance on optimum level. The current study was conducted to examine the impact of Talent Management, Career Development and Compensation Management towards Employees Retention and Organizational Performance with mediating effect of Employees Motivation in Service Sector of Pakistan. The current study is based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) theories. It explains that by increasing internal resources we can manage employee talent, career development through compensation management and employee motivation more effectively. It will result in effective execution of HRM practices for employee retention enabling an organization to achieve and sustain competitive advantage through optimal performance. Data collection was made through a structured questionnaire which was based upon adopted instruments after testing reliability and validity. A total 300 employees of 30 firms in service sector of Pakistan were sampled through non-probability sampling technique. Regression analysis revealed that talent management, career development and compensation management have significant positive impact on employee retention and perceived organizational performance. The results further showed that employee motivation have a significant mediating effect on employee retention and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are also discussed.

Keywords: career development, compensation management, employee retention, organizational performance, talent management

Procedia PDF Downloads 320
190 Colonizing the Colonizers: Layers of Subjectification in the Russian Caucasus

Authors: Aaron Derner

Abstract:

Unlike the histories of France, the UK, or even Spain, the Russian colonial past often dissolves before the seemingly more salient Cold War figurations or Soviet dissolution. The obvious explanation behind Caucasian states’ roles—that of Russian-propped governments obeying the whims of their patron—is but the latest instance of such oversight. Where the results of colonial social and cultural interactions are indelibly stamped across France, Algeria, and every other former (and current) French holding, so to are the Muscovite and Russian colonial ambitions embedded within the modern politics and cultures of both Russia and the Caucasus. Russian colonial artefacts are enhanced and perhaps granted an additional social explanatory edge over those of the ‘typical’ colonizers, by the cyclical adoration for and noisy rejection of European cultural markers over the centuries, along with the somewhat unusual composition of the Cossacks: Russia’s main agents of colonialization within the Caucasian frontier. The story of Russia and Chechnya, of all the Caucasus, is of the manufacture of social and individual identity through “modes of subjectification” inherent within the region’s colonial history and driven by the triangular interactions between three main groups: the Cossacks, the Caucasian Mountain Tribes, and the Russian Metropol. Together, interactions between these social groups worked to shape and transform the lifestyles and institutional pathologies that constitute the Russian and Chechen states and the politics between them. At the core of this (Western) state-building is the simultaneous and seemingly contradictory desire to be more Western and emulate Western cultural and political practices while also desperately grasping for a uniquely Russian identity. This sits somewhat ironically against the backdrop that Russia hosted a frontier-based settler society and had established that distinctly European feature of settler colonialism early in its history—arguably establishing a claim to being the most “colonial” of the colonial powers. There is no doubt that these forces worked to shape contemporary Russian political and social identity—apparent in the mythic popularity of the Cossack in Russian literature, politics, and academic discourse. What needs to be expanded from the current narrative, however, is that beyond the Cossack identity’s attractiveness on the grounds of its tones of freedom and resistance to unjust authority, the identity is rooted in the imperial ambitions and colonial experiences of the Russian state, and is, therefore, a direct marker of domination and subjectification. Adding an unusual dimension to this not-uncommon cultural progression, the Russian state needed to colonize both the Caucases and the Russian Cossacks, appropriating them in much the same way they appropriated the Circassian mountain tribes. The focus of this paper is not to tell yet another story of how one culture entered an area to overpower another but how a ‘powerful,’ ‘modern,’ ‘Western(ish)’ culture was profoundly and continually changed through its contact with a group of tribal ‘savages’ and ‘braves.’

Keywords: Russia, chechnya, subjectification, caucasus, cossacks, Ukraine

Procedia PDF Downloads 76
189 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 388
188 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 164
187 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 177
186 Transforming Data Science Curriculum Through Design Thinking

Authors: Samar Swaid

Abstract:

Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.

Keywords: data science, design thinking, AI, currculum, transformation

Procedia PDF Downloads 81
185 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 351
184 Bedouin Dispersion in Israel: Between Sustainable Development and Social Non-Recognition

Authors: Tamir Michal

Abstract:

The subject of Bedouin dispersion has accompanied the State of Israel from the day of its establishment. From a legal point of view, this subject has offered a launchpad for creative judicial decisions. Thus, for example, the first court decision in Israel to recognize affirmative action (Avitan), dealt with a petition submitted by a Jew appealing the refusal of the State to recognize the Petitioner’s entitlement to the long-term lease of a plot designated for Bedouins. The Supreme Court dismissed the petition, holding that there existed a public interest in assisting Bedouin to establish permanent urban settlements, an interest which justifies giving them preference by selling them plots at subsidized prices. In another case (The Forum for Coexistence in the Negev) the Supreme Court extended equitable relief for the purpose of constructing a bridge, even though the construction infringed the Law, in order to allow the children of dispersed Bedouin to reach school. Against this background, the recent verdict, delivered during the Protective Edge military campaign, which dismissed a petition aimed at forcing the State to spread out Protective Structures in Bedouin villages in the Negev against the risk of being hit from missiles launched from Gaza (Abu Afash) is disappointing. Even if, in arguendo, no selective discrimination was involved in the State’s decision not to provide such protection, the decision, and its affirmation by the Court, is problematic when examined through the prism of the Theory of Recognition. The article analyses the issue by tools of theory of Recognition, according to which people develop their identities through mutual relations of recognition in different fields. In the social context, the path to recognition is cognitive respect, which is provided by means of legal rights. By seeing other participants in Society as bearers of rights and obligations, the individual develops an understanding of his legal condition as reflected in the attitude to others. Consequently, even if the Court’s decision may be justified on strict legal grounds, the fact that Jewish settlements were protected during the military operation, whereas Bedouin villages were not, is a setback in the struggle to make the Bedouin citizens with equal rights in Israeli society. As the Court held, ‘Beyond their protective function, the Migunit [Protective Structures] may make a moral and psychological contribution that should not be undervalued’. This contribution is one that the Bedouin did not receive in the Abu Afash verdict. The basic thesis is that the Court’s verdict analyzed above clearly demonstrates that the reliance on classical liberal instruments (e.g., equality) cannot secure full appreciation of all aspects of Bedouin life, and hence it can in fact prejudice them. Therefore, elements of the recognition theory should be added, in order to find the channel for cognitive dignity, thereby advancing the Bedouins’ ability to perceive themselves as equal human beings in the Israeli society.

Keywords: bedouin dispersion, cognitive respect, recognition theory, sustainable development

Procedia PDF Downloads 350
183 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles

Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan

Abstract:

Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.

Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity

Procedia PDF Downloads 69
182 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches

Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez

Abstract:

Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.

Keywords: structural reliability, reinforced concrete bridges, combined approach, point estimate method, monte carlo simulation

Procedia PDF Downloads 346